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During the last two decades, use of statistical models and methods for the analysis of dynamic phenomena
has become widespread in various fields of natural sciences and technology. Statistical dynamics, concemed
with the study of various random phenomena in dynamic systems, enriches the classical basic theory of
oscillations. It also extends the possibilities for its application to the description and analysis of real response
processes in dynamic systems, which in many cases may be of quite irregular or random nature. In fact,
many phenomena can be described adequately only within the frame work of statistical models i.e.
deterministic models prove to be inadequate, or at least extremely complex. Problems of this kind arise,
frequently, in rotor dynamics, especially those involving random vibrations of bearings (rolling element and
fluid film both), excited by random loads. Moreover, rotor bearing problems are inherently strongly nonlinear
(Dimentberg, 1988; Bendat, 1990; Soong and Grigoriu, 1993; Lin and Cai, 1995; Ragulskis et al, 1974;
Harris, 1984; Stolarski, 1990; Zhou and Hashimoto, 1995; Choy et al, 1992; Childs, 1993).

Rolling element bearing are known to possess highly non-linear elastic characteristics and the complexities
and approximate nature of the analytical determination of these properties are responsible for some of the
unreliability in the prediction of the response and stability of a rotor system. Procedures [Ragulskis, et. al.,
1974; Harris, 1984] are available for estimation of bearing stiffness under static loading conditions in
isolation of shaft. The existing parameter estimation techniques for overall rofor-bearing systems (e.g.

Muszynska and Bently, 1990) involve, a controlled input excitation , that needs to be given to the bearings.

The present study attempts for the development of a parameter estimation procedure, for the non-linear
elastic parameters of bearings, that can be used on-line, and is based on the analysis of easily accessible

vibration signals, picked up from the bearing caps.



The forces setting the rotor-bearing system comprise of both - harmonic forces, due to rotor unbalance and
random forces due to bearing surface imperfections, caused by random deviations from their standard
theoretical design and progressive surface and subsurface deterioration. In addition excitation can be
contributed by from random inaccuracies in the rotor-bearing-housing assembly etc. Stochastical dynamics
methods provide an opening, to attempt the inverse problem of parameter estimation, in such a rotor-bearing
system, govemed by a non-linear equation of motion, having both deterministic and random excitation. Under
certain engineering assumptions, the random excitation can be taken to be an ideal white noise process and
the response of a dynamic system (linear or non-linear) can be modeled as a diffusive Markov Process or an

approximate Markov Process.

The structure of a Markov Process is completely determined for all future times by the distribution at some
initial time and by a transition probability density function, which satisfies the Fokker-Planck-Kolmogorov
(FPK) equation. The FPK equation can be solved to obtain analytical expressions for the first order
probability distribution of the stationary response. For the response to be modeled by a Markov Process, it is
necessary that the excitations be approximated by ideal white noises. This restriction can be, in principle,
removed at the price of increasing the complexity of the system. Linear filters are introduced between the
ideal white-noise excitations and the system, to produce realistic excitation spectra for the nonlinear system.
The ideal white-noise excitations, driving the filters, guarantee that the response of the extended system is a
Markov Process (of higher order), for which an extended FPK equation can be written. For such an
approximate Markovian modeling stochastic averaging is applied, whereby rapid fluctuations are averaged to
provide simpler equations for slowly fluctuating quantities. The procedure is a nontrivial extension of the
Krylov-Bogoliubov (1937) averaging method for deterministic excitations, since it involves accounting for

the averaged effect of a random excitation multiplied by a correlated response.

The problem is initially attempted for balanced rotors, by considering the random forces from the bearings
as the primary source of excitation, which are generally large enough to cause measurable level of vibrations.
The dynamics of the rotor-bearing system is modeled as a Markov Process and Fokker-Planck equations are
formulated. The drift and diffusion coefficients in the FPK equation are derived from the nonlinear equations
of ‘motion of the dynamic system (Crandall, 1958). The approach to the solution of equation is greatly
simplified if the overall random excitation to the system, from the variety of sources, is treated as ideal white
noise. While many engineering applications are based on this idealization, insofar as the excitation itself is

concemed, it turns out that the response obtained through such models are quite acceptable if the time scale



of excitation 1s much smaller than the time scale of the response (Lin, 1973). The time scale for the
excitation is the correlation time, roughly defined as the length of time separation beyond which the
excitation process is nearly uncorrelated. The time scale of the response is the measure of the memory
duration of the system which is generally about one quarter of the natural period of a mode which contributes

significantly to the total response.

The Fokker-Planck equations for the rotor-bearing system are solved, to obtain the first order distribution of
the response, which is further processed for the inverse problem of parameter estimation. The linear and
nonlinear bearing stiffiess parameters are obtained. The technique has a distinct advantage that, it does not
require an estimate of the excitation forces and works directly on the response signals from the bearing caps.
In this analysis the rotor is treated as a rigid body. The algorithm is tested by Monte Carlo simulation. The
procedure is illustrated for a‘Taboratory rotor rig and the results are compared with those from the analytical

formulations of Harris (1984) and Ragulskis et al. (1974).

The analysis becomes more involved, if the shaft flexibility is taken into account. The present study further
attempts the problem of bearing stiffness parameter estimation for flexible rotors. In contrast to the rigid
rotor case, which could be treated as a single degree freedom problem, the flexible rotor poses a nonlinear
multi-degree of freedom problem. The excitation to the balanced system is taken to be random in nature,
primarily arising out of bearing and assembly imperfections. The problem is formulated for a flexible shaft
carrying a centrally located rigid disc and supported at the ends by nonlinear bearings. The inverse problem
is approached by initially effecting a coordinate transformation, so as to enable the governing equations to be
modeled as Markov Processes through the Fokker-Planck equations. The solution to the Fokker-Planck
equation is obtained under certain engineering assumptions. A curve fitting algorithm is developed to process
the statistical response of the system obtained by the solution of the Fokker-Planck equation, to extract the

rotor-bearing stiffness parameters.

The problem, for rotors with flexible shafts and carrying more than one disc, is considered next. The
goveming nonlinear differential equations for such multi-mass flexible systems are derived for balanced
rotors with random excitation at the bearings. The goveming equations are subjected to a coordinate
transformation and modeled as Markov Processes. General form expressions, for the first order probability
statistics of the response are obtained. The statistical response is processed to extract the rotor-bearing

stiffness parameters. The procedure is illustrated for a laboratory test-rig with two discs and the



experimental results are compared with the analytical guidelines of Harris (1984) and Ragulskis et al.
(1974). The algorithm developed is tested by Monte Carlo numerical simulation procedure.

The above studies concem single-degree-of-freedom and multi-degree-of-freedom systems, where the rotor is
assumed to be balanced. The study, further, explores the possibility of estimation of linear and non-linear
stiffness parameters, for rotors with unknown unbalance. The problem is formulated as single degree of
freedom system. The case of a rotor with a rigid shaft, in nonlinear flexible bearings is investigated. The
excitation to the system consists harmonic forces due to the unbalance and random forces due to arbitrary
deviations, of bearing contact surfaces and subsurfaces, from their ideal design and their progressive
deterioration during operation. These random forces are comparable to the harmonic excitation forces, if the
unbalance is not significantly large. The parameter estimation procedure is based on the averaging technique
of Bogoliubov and Mitropolsky (1961) for deterministic non-linear systems, extended by Stratonovich (1967)
for stochastic differential equations. The goveming equation of motion is transformed from the rapidly
varying variables, namely displacement and velocity, to variables, amplitude and phase, varying slowly with
time. Stochastic averaging is done, to take into account the effect of the random excitation multiplied by a
correlated term, so as to model the slowly varying amplitude as an approximate Markovian process. A
second order stochastic approximation is carried out and a one-dimensional Fokker-Planck equation is
derived to describe the Markovian amplitude process. The response to the Fokker-Planck equation is derived
and processed for parameter estimation. Along with the bearing stiffness parameters, estimates of the
unknown unbalance of the rotor, its angular location and the damping ratio are also obtained, as by-products.
The procedure is illustrated for a laboratory rotor rig and the experimental results are validated through

comparisons with the available analytical guidelines.

To summarize, non-linear bearing stiffness estimation procedure, based on statistical methods, have been
developed for cases of rigid rotors, single disc flexible rotors, multi-disc flexible rotors. The study is
extended, to include harmonic excitation to the non-linear system along with random excitation and the case
of an unbalanced rigid rotor is discussed. The estimation procedure has an advantage over existing ones, for
it does not require an estimate of the excitation forces and works directly on the measured response signals of
the system and therefore can be employed on-line. The algorithms are illustrated for a laboratory rotor-

bearing test rig and the results are compared with those obtained through an existing analytical model.
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CHAPTER 1

INTRODUCTION

Bearing analysis constitutes a major area in rotordynamic studies. The response and stability of a rotos
system are critically dependent on bearing characteristics. It has become evident in recent years, that ar
important class of rotor bearing phenomenon cannot be studied without adequately accounting for the
nonlinear forces produced by the bearings. Bearing nonlinearity assumes a greater role for high speed anc
low weight rotor applications, where the vibration amplitudes tend to be relatively large. While, dynamic
characterization of fluid film bearings has drawn considerable attention from researchers, the information

available, on the nonlinear aspects of rolling element bearings under dynamic conditions, is relatively scarce.

Rolling element bearings, and in particular ball bearings, despite their mechanical simplicity, are known to
display highly nonlinear behaviour and present some very complex rotor problems. The approximate nature
of the analytical determination of these bearing properties is responsible for some of the unreliability in the
prediction of the response and stability of a rotor system. Procedures (Ragulskis, et al., 1974; Harris, 1984)
are available for estimation of bearing stiffness under static loading conditions in isolation of shaft. The
existing parameter estimation techniques for overall rotor-bearing systems (e.g. Muszynska and Bently;

1990) involve, a controlled input excitation , that needs to be given to the bearings.

The present study attempts for the development of a parameter estimation procedure, for the non-linear
elastic parameters of bearings, that can be used on-line, and is based on the analysis of easily accessible

vibration signals, picked up from the bearing caps.

The forces setting the rotor-bearing system into vibrations comprise of both - harmonic forces, due to rotor
unbalance and random forces due to bearing surface imperfections, caused by random deviations from their
standard theoretical design and progressive surface and subsurface deterioration. In addition excitation can

be contributed By from random inaccuracies in the rotor-bearing-housing assembly etc.

Stochastical dynamics methods provide an opportunity, to attempt the inverse problem of parameter

estimation, in such a rotor-bearing system, governed by a non-linear equation of motion and having both



deterministic and random excitations. Under certain engineering assumptions, the random excitation can b
taken to be an ideal white noise process and the response of a dynamic system (linear or non-linear) can be

modeled as a diffusive Markov Process or an approximate Markov Process.

The structure of a Markov Process is completely determined for all future times by the distribution at some
initial time and by a transition probability density function, which satisfies the Fokker-Planck-Kolmogorov
(FPK) equation. The FPK equation can be solved to obtain analytical expressions for the first order
probability distribution of the stationary response. For the response to be modeled by a Markov Process, it is
necessary that the excitations be approximated by ideal white noises. This restriction can be, in principle,
removed at the price of increasing the complexity of the system. Linear filters are introduced between the
ideal white-noise excitations and the system, to produce realistic excitation spectra for the nonlinear system.
The ideal white-noise excitations, driving the filters, guarantee that the response of the extended system is a
Markov Process (of higher order), for which an extended FPK equation can be written. For such an
approximate Markovian modeling stochastic averaging is applied, whereby rapid fluctuations are averaged to
provide simpler equations for slowly fluctuating quantities. The procedure is a nontrivial extension of the
Krylov-Bogoliubov (1937) averaging method for deterministic excitations, since it involves accounting for

the averaged effect of a random excitation multiplied by a correlated response.

The problem is initially attempted for balanced rotors, by considering the random forces from the bearings
as the primary source of excitation, which are generally large enough to cause measurable level of vibrations.
The dynamics of the rotor-bearing system is modeled as a Markov Process and Fokker-Planck equations are
formulated. The drift and diffusion coefficients in the FPK equation are derived from the nonlinear equations
of motion of the dynamic system (Crandall, 1958). The approach to the solution of equation is greatly
simplified if the overall random excitation to the system, from the variety of sources, is treated as ideal white
noise. While many engineering applications are based on this idealization, insofar as the excitation itself is
concemed, it tums out that the response obtained through such models are quite acceptable if the time scale
of excitation is much smaller than the time scale of the response (Lin, 1973). The time scale for the
excitation is the correlation time, roughly defined as the length of time separation beyond which the
excitation process is nearly uncorrelated. The time scale of the response is the measure of the memory
duration of the system which is generally about one quarter of the natural period of 2 mode which contributes

significantly to the total response.



The Fokker-Planck equations for the rotor-bearing system are solved, to obtain the first order distribution of
the response, which is further processed for the inverse problem of parameter estimation. The linear and
nonlinear bearing stiffness parameters are obtained. The technique has a distinct advantage that, it does not
require an estimate of the excitation forces and works directly on the response signals from the bearing caps.
In this analysis the rotor is treated as a rigid body. The algorithm is tested by Monte Carlo simulation. The
procedure is illustrated for a laboratory rotor rig and the results are compared with those from the analytical

formulations of Harris (1984) and Ragulskis et al. (1974).

The analysis becomes more involved, if the shaft flexibility is taken into account. The present study further
attempts the problem of bearing stiffness parameter estimation for flexible rotors. In contrast to the rigid
rotor case, which could be treated as a single degree freedom problem, the flexible rotor poses a nonlinear
multi-degree of freedom problem. The excitation to the balanced system is taken to be random in nature,
primarily arising out of bearing and assembly imperfections. The problem is formulated for a flexible shaft
carrying a centrally located rigid disc and supported at the ends by nonlinear bearings. The inverse problem
is approached by initially effecting a coordinate transformation, so as to enable the goveming equations to be
modeled as Markov Processes through the Fokker-Planck equations. The solution to the Fokker-Planck
equation is obtained under certain engineering assumptions. A curve fitting algorithm is developed to process
the statistical response of the system obtained by the solution of the Fokker-Planck equation, to extract the

rotor-bearing stiffness parameters.

The problem, for rotors with flexible shafts and carrying more than one disc, is considered next. The
governing nonlinear differential equations for such multi-mass flexible systems are derived for balanced
rotors with random excitation at the bearings. The goveming equations are subjected to a coordinate
transformation and modeled as Markov Processes. General form expressions, for the first order probability
statistics of the response are obtained. The statistical response is processed to extract the rotor-bearing
stiffness parameters. The procedure is illustrated for a laboratory test-rig with two discs and the
experimental results are compared with the analytical guidelines of Harris (1984) and Ragulskis et al.
(1974). The algorithm developed is tested by Monte Carlo numerical simulation procedure.

The study, further, explores the possibility of estimation of linear and non-linear stiffness parameters, for
rotors with unknown unbalance. The problem is formulated as single degree of freedom system. The case of

a rotor with a rigid shaft, in nonlinear flexible bearings is investigated. The excitation to the system consists



harmonic forces due to the unbalance and random forces due to arbitrary dewviations, of bearing contact
surfaces and subsurfaces, from their ideal design and their progressive deterioration during operation. These
random forces are comparable to the harmonic excitation forces, if the unbalance is not significantly large.
The parameter estimation procedure is based on the averaging technique of Bogoliubov and Mitropolsky
(1961) for deterministic non-linear systems, extended by Stratonovich (1967) for stochastic differential
equations. The govemning equation of motion is transformed from the rapidly varying vanables, namely
displacement and velocity, to variables, amplitude and phase, varying slowly with time. Stochastic averaging
is done, to take into account the effect of the random excitation multiplied by a correlated term, so as to
model the slowly varying amplitude as an approximate Markovian process. A second order stochastic
approximation is carried out and a one-dimensional Fokker-Planck equation is derived to describe the
Markovian amplitude process. The response to the Fokker-Planck equation 1s derived and processed for
parameter estimation. Along with the bearing stiffness parameters, estimates of the unknown unbalance of
the rotor, its angular location and the damping ratio are also obtained, as by-products. The procedure is
illustrated for a laboratory rotor rig and the experimental results are validated through comparisons with the

available analytical guidelines.



The drift and diffusion coefficients in the FPK equation can be derived from the nonlinear equations of
motion of the dynamic system (Crandall, 1966). A general, closed form solution to FPK equation is yet to be
found. When the time derivative in FPK equation is set equal to zero, the equation describes the first order
probability distribution for the stationary response. The distribution is readily obtained for a limited class of
vibratory systems with nonlinear restoring forces and special forms of nonlinear damping (Fuller, 1969;
Caughey, 1971; Caughey and Ma, 1983; Pradlwarter et al., 1991). The Fokker-Planck equation was derived
and the exact station.ary response was obtained for certain cases of two-degree of freedom non-linear
dynamic systems, by Araratnam (1960). The theory was generalized later by Caughey (1963) for multi-
degree of freedom cases.

The exact mean-square response and average, frequently provided by the first-order distribution, have been
widely used as a basis for comparison with results of various approximate methods and/or procedures for
computer simulation. The time dependent solution to FPK equation i. e., the transition probability density
function, has been obtained for only a few nonlinear systems (Caughey, 1971; Roberts, 1981a). Yong and
Lin (1987). Lin and Cai (1988a,b) have developed a systematic procedure to obtain the exact stationary
response for either external (additive) or parametric (multiplicative) excitations, or both. Exact stationary
solution in terms of probability density function, for a class of non-linear systems driven by a non-normal-

delta-correlated process has been obtained recently by Vasta (1995).
2.2 STOCHASTIC AVERAGING OR APPROXIMATE MARKOYV PROCESS APPROACH

For the response to be approximated by a Markov process, it is necessary that the excitation be
approximated by ideal white noise. This restriction can be, in principle, removed at the price of increasing the
complexity of the system, by introducing linear filters between the ideal white-noise excitations and the
system. The filters serve to produce realistic excitation spectra for the nonlinear system, while the ideal
white-noise excitations dﬁﬁllg the filters guarantee that the response of the extended system is a Markov
process (of higher order), for which an extended FPK equation can be written. This strategy has often been
suggested but it has, apparently, never been implemented for nonlinear response problems. However, it can
be shown by using stochastic averaging principles that, under certain conditions, the response of a nonlinear
dynamic system to non-white excitation can be approximated by .a Markov process. The designation -
stochastic averaging - has been applied to a class of procedures in which rapid fluctuations are averaged to

provide simpler equations for slowly fluctuating quantities. The procedure is a nontrivial extension of the



Krylov-Bogoliubov (1937) averaging method for deterministic excitations, since it involves accounting for

the averaged effect of a random excitation multiplied by a correlated response.

There are three distinct approaches to stochastic averaging., The first approach was introduced by
Stratonovitch (1967) and rigorously justified by Khasminskii (1966) and by Papanicolaou and Kohler
(1974). Approximate equations for the slowly varying quantities are obtained by time-averaging the rapid
fluctuations. This method, called the standard stochastic averaging method (or Stratonovitch's stochastic
averaging method), is applied to narrow-band responses which can be represented as sinusoidal oscillations
with slowly varying amplitude and phase. The formulae of the stochastic averaging methods were also
derived by Lin (1986) using a different procedure, making the physical implication of the method clearer and
more appealing to engineers. A generalization of stochastic averaging in random excitation with special
emphasis was placed on casting the problem in a more formal mathematical framework by Red-Horse and
Spanos (1992). Zhu et. al. (1994) improved the stochastic averaging procedure. Bouc (1994) has obtained
the random response with a higher order approximation in the presence of a large non-linear stiffness term in

a dynamic system subjected to random excitations.

Another approach involves averaging the drift and diffusion coefficients in the FPK equation, with respect to
time. The mathematical basis for this method is contained in a theorem by Khasminskii (1963) and is called
the Averaging Method of Coefficients in FPK equation. One more approach is based on dividing the response
variables into rapidly varying quantities and slowly varying quantities and approximate equations for the
latter are obtained by averaging the rapid fluctuations of the former. The basis for this is also due to
Khasminskii (1968). For a single degree of freedom oscillator, the rapidly varying quantity is the
displacement and the slowly varying quantity is the energy envelope (Dimentberg, 1980; Roberts, 1983;
Spanos, 1983; and Zhu, 1983). This method is called the Generalized Stochastic Averaging Method (or
Stochastic Averaging Methods of Energy Envelope). Moshchuk et al. (1995) gave an analytical method
based on the stochastic averaging of the energy envelope to treat the dynamic behaviour of single-degree-of-

freedom elastic ocean structures subjected to non-linear hydrodynamic loading by Gaussian ocean waves.

All the above three approaches have been extensively applied to nonlinear random vibration of mechanical
and structural systems as effective approximations for prediction of the response, stability and reliability.
Among the three stochastic averaging methods, the Standard Stochastic Averaging Method finds the most

popular application on account of its accuracy, applicability and simplicity (Zhu, 1988). For nonwhite



excitation in non-linear random dynamic system, Cai (1995) developed a procedure of quasi-conservative
averaging. He solved the Duffing oscillator under both external and parametric excitations with nonwhite
spectral densities.

2.3 STATISTICAL LINEARIZATION METHOD

A natural method of approaching a nonlinear problem is to replace the given set of nonlinear equations by an
equivalent set of linear ones, since a linear system is so much easier to analyse. This is achieved by
minimizing the difference between the non-linear and linear sets of equations in an appropriate sense. The
basic development of a suitable linearization procedure (variously known as statistical linearization,
equivalent linearization or stochastic linearization), for randomly excited nonlinear systems, is usually
attributed to Booton et al (1953), Booton (1954) and Caughey (1963a). They generalized the deterministic

linearization methods of Krylov and Bogoliubov (1937) to the stochastic case.

Although, rationalizations for the procedure usually appeal to a small nonlinearity argument, it fortuitously
tums out that the error In mean-square response remains quite modest even for large nonlinearities
(Jazwinski 1970). A great advantage of the statistical linearization method is that it can easily be generalized
to cope with multi-degree of freedom systems, including those where hysteretic elements are incorporated.
The earliest extensions of the theory in this direction were given by Caughey (1963a) and Kazakov (1965a ,
1965b). Subsequently there have been a number of theoretical advantages in this area (Roberts 1981b). The
technique has no difficulty in dealing with non-white excitations and can be further generalized to cope with
non-stationary excitations and responses (Spanos 1981a, Roberts 1981b: Roberts and Spanos, 1990). Chang
and Young (1989) obtained the stationary response of robot manipulators under stochastic base and external
excitations by statistical linearization method. Socha and Soong (1991) reviewed and gave an assessment of
the procedures in the area of statistical and equivalent linearization in the analysis of non-linear stochastic
systems. Stochastic linearization on nonlinear multi-degree-of-freedom systems under random parametric
excitation was examined by Falsone (1992). Elishakoff and Cai (1993) obtained an approximate solution for
nonlinear random vibration problems by a partial stochastic linearization. Stochastic equivalent linearization
was used by Chang (1994) to develop a finite element formulation for the dynamic response analysis of non-

linear hysteretic plates subjected to random excitations. Soize (1995) described the calculation of the power



spectral density function of stationary response and the method of identification, of single degree of freedom
non-linear second order dynamic systems excited by a white or a broad-band Gaussian noise. Grigoriu
(1995) has developed an equivalent linearization method for the analysis of the non-linear systems with

Poisson white noise input.
2.4 PERTURBATION METHOD

Perturbation methods are generally employed, when the amount of nonlinearity in a system is controlled by a
small scaling parameter. The solution is sought in the terms of a power series in the small scaling parameter
and successive terms are evaluated as linear responses to nonlinear functions of the preceding terms. This
classical approach for deterministic nonlinear problems (Stoker, 1950) was extended to random vibration
problems by Crandall (1963). In practice, the calculations are seldom carried beyond the first perturbation.
The perturbation series is often an asymptotic series, so that the higher order perturbations improve the

approximation for small scaling parameter at the expense of worsening it for large scaling parameter.

Functional series methods offer an alternative approach to developing an expansion, based on the linear
solution. An example of the application of a such method is the work of Orabi and Ahmadi (1987). They
used a Wiener-Hermite expansion and presented a formal procedure for deriving the deterministic equations
governing the kernel functions, arising in the expansion (Roy and Spanos, 1990). A common difficulty with
all expansion methods lies in establishing the regimes of convergence, in the appropriate parameter space. It
is frequently found that, due to a combination of poor convergence properties and excessive computational

requirements, it is only possible to obtain reliable results if there is a very small degree of nonlinearity.
2.5 METHOD OF MOMENTS

A set of differential equations for various statistical moments, or related quantities known as cumulants (or
semi-invariants) and quasi-moments (Stratonovitch, 1967) of the response, as the function of time, can be
obtained by multiplying the FPK equation by suitable functions and integrating over the probability space.
Equivalent sets of equations can be derived directly from the dynamic equations of motions or the equivalent
It equations. The response problem is thus reduced to a set of coupled ordinary differential equations. For
linear systems the set of equations closes, in the sense that for some finite ‘n’ there is a set of ‘n’ independent

equations in which only ‘n” unknown moments appear. For nonlinear systems, the set of equations forms an



10

infinite hierarchy: There are always more unknown moments than equations. Approximate solutions have
been proposed, based on ad-hoc closure assumption: Certain higher order moments are neglected or assumed

to be related to lower order moments, in the same way that moments of Gaussian processes are related

(Bolotin, 1979; Ibrahim and Roberts, 1978; Roberts, 1981a).

A non-Gaussian closure method, based on constructing an approximate representation of the system’s
probability density function with ‘n’ adjustable parameters and using ‘n’ independent moment equations to
determine the parameters, was proposed by Dashevskii and Liptser (1967). A characteristic feature of this
approach is that the complexity of the moment equations dramatically increases as the order of closures
increases. However, results for nonlinear oscillators have been obtained for ‘n’ values up to 6, using both
cumulant closure (Wu and Lin, 1984; Lin and Wu, 1984) and quasi-moment closure (Bover, 1978). These
studies demonstrate that a significant improvement in accuracy can be obtained by progressing beyond
simple Gaussian closure. The method has been applied by Ibrahim and coworkers ( Ibrahim, 1985; Ibrahim
and Soundararajan, 1985; Ibrahim et al, 1985) to a study of the response of systems with nonlinear inertial
terms to random excitation. The method gives good results in some cases but is apparently not a very robust

procedure ( Crandall, 1985).

A second-order closure method was presented by Nayfeh and Serhan (1990) for determining the response of
non-linear systems to combined deterministic and random excitations. A closure method was proposed by
Grigoriu (1991) for calculating moments of the state vector of non-linear system satisfying an Ité stochastic
differential equation. Paola et al. (1992) presented the extension of the Itd rule for the case of vector real
functions of the response of nonlinear systems excited by zero-mean Gaussian white noise processes. Davies
and Liu (1992) have obtained the response of a non-linear oscillator excited by random narrow-band noise by
stochastic averaging followed by partial linearization. Ibrahim et al (1993) have examined stochastic
bifurcation in moments of a clamped-clamped beam response to wide band random excitations analytically
(Gaussian and non-Gaussian closure), numerically (Monte Carlo simulation) and experimentally. An

efficient moment calculation method has been developed, recently, by Katafygjotis and Beck (1995).

2.6 METHOD OF EQUIVALENT NON-LINEAR EQUATIONS

An altemative generalization of statistical linearization has been proposed by Caughey (1986). The idea is to

replace the original set of nonlinear differential equations by an equivalent nonlinear set, where the latter
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belong to a class of problems which can be solved exactly. This class is, at present, very limited, and thus the
range of applicability of the technique is correspondingly restricted. The results have been obtained for
oscillators with nonlinearity in damping and stiffness (Caughey, 1986; Cai and Lin, 1988; Zhu and Yu,
1989). The equivalent statistical quadratization methods have been applied to non-linear multi-degree-of-
freedom systems subjected to random excitation by Spanos and Donley (1991, 1992). It has been
demonstrated that the method is very effective as a means of predicting the probability distribution of the

response, with reasonable accuracy.

277 METHOD OF COMPUTER SIMULATION

Numerical simulation or the Monte Carlo method (Shinozuka, 1972; Bolotin, 1979; Spanos, 1981b;
Rubinstein, 1981; Spanos and Mignolet, 1989) consists of generating a large number ‘m’ of sample
excitations, computing the corresponding response samples and processing them to obtain the desired
response statistics. The backbone, of any digital simulation study, is an algorithm which provides a set of
pseudo-random numbers, belonging to a population with a specified probability density function. Proper
processing of this set of numbers can yield the values of sample functions of random process excitations,
with pre-selected frequency content and temporal variation of intensity, at successive discrete equi-spaced
times. Upon generating a single sample of excitation, the commonly available subroutines for the numerical
integration of the differential equations can be employed to obtain the system response. Another sample of
the excitation can then be generated and the computed values of the system response can be used to update
its statistics. The procedure is, in principle, very general and applicable to stationary or non-stationary

response of systems of any degree of complication.

The statistical uncertainty in the response statistics decreases in proportion to ‘m’ while the computational
cost increases essentially in proportion to ‘m’. To gain one additional significant figure in a result requires a
hundred fold increase in computational cost. Spanos (1981a) has estimated that, for cases where both
statistical linearization and numerical simulation can be applied, the computational efficiency of the former
will be of the order of 100 to 1000 times better than the latter. In applications where no exact solution is
available numerical simulation is often used as a basis for assessing the accuracy of other approximate
methods. Benaroya and Rehak (1988) reviewed the field of probabilistic structural analysis where finite
element methods are used. The stochastic finite element analysis was applied to obtain response of

geometrically and materially non-linear plane trusses under random excitations by Chemg and Wen (1991).
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The finite element method is applied, in conjunction with the method of equivalent linearization, to large -
deflection random response of thermally buckled beams by Locke and Mei (1990) and to the non-linear
random response of beams by Locke (1994).

2.8 ROLLING ELEMENT BEARING VIBRATIONS AND STIFFNESS ESTIMATION

Estimation of the elastic parameters of bearings involves establishing a relationship between the incident load
on the bearing and its resultant deformation. The classical solution for the local stress and deformation of
two elastic bodies apparently contacting at a single point was established by Hertz in (1896). Hertz's analysis
is applied to surface stresses caused by a concentrated force, applied perpendicular to the surface. In the
determination of contact deformation versus load, the concentrated load applied normal to the surface alone,
is considered, for most rolling element bearing applications. Methods of calculation of the surface and
subsurface stresses of the combination of normal and tangential (traction) stresses are complex, (Zwirlein
and Schlicht, 1980). Owing to infinitesimally small irregularties in the basic surface geometries of the
rolling contact bodies, neither uniform normal stress field nor a uniform shear field are likely to occur in
practice (Sayler et al, 1981; Kalker, 1982). Rigorous mathematical/numerical methods have been developed
to calculate the distribution and magnitude of surface stresses in any line contact situation, that is, including
the effects of crowning of rollers, raceways, and combinations thereof (Kunert, 1961; Reusner, 1977).

Additionally, finite element methods (FEM) have been employed (Fredriksson, 1980) to perform the same

analysis.

It is possible to determine how the bearing load is distributed among the balls or rollers, after having
determined how each ball or roller in a bearing carnes load. To do this it is necessary to develop load-
deflection relationships for rolling elements contacting raceways. Most rolling bearing applications involve
steady-state rotation of either the inner or outer raceways or both. Rolling element centrifugal forces,
gyroscopic moments and frictional forces and moments do not significantly influence this load distribution in
most applications. Theoretical models (Palmgren, 1959; Ragulskis et al., 1974; Harnis, 1984; Eschamann et

al. 1985; Stolarski, 1990) are available for estimation of bearing stiffnesses under static loading conditions.

Bearings concem vibrations caused due to geometric imperfections of contact surfaces were first analyzed by
Lohman (1953) and Gustavsson (1962). Significant contributions have been made by Gupta et al (1975,
1977, 1978a, 1978b, 1978c, 1978d) towards the understanding of rolling element bearing dynamics.
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Comprehensive investigations have been carried out on the high frequency response of bearings ( McFadden
and Smuth, 1984) and its relation to surface irregularities ( Sunnesjo, 1985; McFadden and Smith, 1985; Su

et al, 1993). Lim and Singh have analyzed the vibration transmission through rolling element bearings in
series of publications (1990a, 1990b, 1991, 1992, 1994).

A method for determination of the nonlinear characteristics of bearings using the procedure of Krylov-
Bogoliubov-Mitropolsky has been suggested by Kononenko and Plakhtienko ( 1970). Honrath (1960) and
Elsermans et al (1975) examined the stiffness and damping of rolling element bearing experimentally.
Walford and Stone (1980) designed and fabricated a test rig for direct measurement of the relative
displacement of the shaft and bearing housing for the oscillating force applied to the bearing housing, which
is used to obtain the stiffness parameters. They found that the interfaces play between races and housing and
shaft play a significant role in the determination of bearing stiffness and damping. Beatty and Rowan (1982)
determined the dynamuc stiffness of ball bearing. Kraus et al (1987) presented a method for the extraction of
rolling element bearing stiffness and damping under operating conditions. The method is based on
experimental modal analysis combined with a mathematical model of the rotor-bearing-support system.
Effects of speed, preload and free outer race bearings on stiffness and damping have been investigated. The
technique involves a controlled input excitation to be given to the bearings. Mitchell et. al (1966) obtained
the stiffness of an oil film beanng, expenmentally, by application of static loads. Morton (1971) devised the
measurement procedure for estimation of the dynamic charactenistics of a large sleeve bearing by application
of dynamic loads using vibrators. Nordmann and Schollhomn (1980) identified the stiffness and damping
coefficients of journal bearings by means of the impact method. Sahinkaya and Burrows (1984) estimated
the linearised oil film parameters from the out-of-balance response where the shaft was excited by a known
unbalance force. Muszynska (1990) has developed a perturbation technique for estimation of these
parameters. Goodwin (1991) reviewed the experimental approaches to rotor support impedance
measurement, with partucular emphasis on fluid film bearing impedance measurement. A general procedure
for identification of restoring force nonlinearity from a system’s response to a white-noise excitation has been
discussed by Dimentberg and Sokolov (1991). Nonlinear stochastic contact vibrations and frictuon at a
Hertzian contact have been studied by Hess et al (1992). Analytical and expeﬁmental studies are carried out
by them, using the Fokker-Planck equation and simulating the vibrations to the contact regon. either
externally by a white Gaussian random normal load or internally by a rough surface input. Childs and Hale

(1993) devised a test apparatus and facility to identify the rotordynamic coefficients of high speed
hydrostatic bearings.



CHAPTER 3

BEARING STIFFNESS ESTIMATION IN SINGLE-DISC RIGID ROTORS

The forces setting the rotor-bearing system into vibrations, comprise of both - harmonic forces, due to rotor
unbalance and random forces due to bearing surface imperfections, caused by random deviations from their
standard theoretical design and progressive surface and subsurface deterioration. The problem is initially
attempted for balanced rotors, by considering the random forces from the bearings as the primary source of

excitation, which are generally large enough to cause measurable level of vibrations.
3.1 EQUATION OF MOTION

The govemning equation for a balanced rigid rotor supported at ends in bearings (Figure 3.1) with nonlinear

stiffnesses can be written as
¥+ 200 % + o [x +AG(x)] = £(£) (.1)

where G can be a polynomial in x and A4 is the unknown non-linear stiffness contribution parameter. f(¢)

in equation (3.1) represents the random excitation to the system caused due to bearing surface
imperfections and progressive wear and tear. In addition excitation can be contributed by from random

inaccuracies in the rotor-bearing-housing assembly etc.

The Markov vector approach is adopted for obtaining expressions for the response of the nonlinear random
system of equation (3.1). The approach to the solution of equation (3.1) is greatly simplified if the overall
random excitation to the system, from the variety of sources, is treated as ideal white noise. For an ideal
white noise process, the response of a dynamic system (linear or non-linear) is a diffusive Markov process.
The structure of a Markov process is completely determined for all future times by the probability
distribution at some initial time and by a transition probability distribution, which satisfies the Fokker-
Planck equation. While many engineering applications are based on this idealization, insofar as the

excitation itself is concemed, it tums out that the response obtained through such models are quite



Figure 3.1 Rotor on rolling element bearings
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acceptable if the time scale of excitation is much smaller than the time scale of the response (Lin, 1973).
The time scale for the excitation is the correlation time, roughly defined as the length of time separation
beyond which the excitation process is nearly uncorrelated. The time scale of the response is the measure of
the memory duration of the system which is generally about one quarter of the natural period of a mode

which contributes significantly to the total response. The statistical averages of the ideal white noise can be

expressed as

<f()>=0

(3.2)
<f@)f()>=215,6(t, —t,)

where S 0 is the uniform spectral density of excitation and ¢ denotes Direc delta function.

3.2 F-P-K EQUATION
For a set of state space equations

& | a=x

i=1,2,....N (3.3)
& = f(-AI M)B,x -V (%, %....xy) [ &)
with f,(¢), being the zero mean white noise excitation, as defined in equations (3.2), the response is a

diffusive Markov process. for which the transition probability density function is govemned by the Fokker-
Planck equation, given as (Caughey, 1963)

N
pld=-21018 {a;p}+31 &, {b; p}]
- (.4)
N N
+(U/ 2SS [6% | &l eypy+8° 1 & {d ypy + 5" | B, {ey; p}]
i=l j=1

where N is the number of degrees of freedom in the dynamic-system-model.
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The first order moments, a; , b, ,inthe Fokker-Planck equation, called the drift coefficients, are given by

a,(x,1) = 13310 (< Ax; > /A1)

» 7N (3.5)
b,(x,t)= Lu_l)lo (<Ax; > /A1)

and the second order moments, ¢, , d; , e, , called the diffusion coefficients, are expressed as
c;(x,1) = lim (< Ax? >/Ar)
At—>0
. . .2 ;o—
dff(x’t)=gino (<Ax; > /A1) i=1,2,..,N 3.6)

e;(x,%,1) = lim (< Ax;Ax; > /Af)
At—0

The governing equation, (3.1), for the rotor-bearing system under consideration can be rewritten as

dx/dt =x
3.7
de /dt = f(t)- 24w, % — w’x — w2 AG(x)
and its dnift and diffusion coefficients, from equations (3.5) and (3.6), obtained as
a, =x .
3.3)
b, = 24w, % -0 x — 0> 1G(x)
and
¢, =0
d,, =215, (3.9)
ey =
The Fokker-Planck equation, for the rotor-bearing system, can then be written as
2
.p : 2 4 ap_p
~x—+—2¢w pxp) + @pu[x + AG(x)]—+ S, —5 = — 3.10
8 2+ Qgopip) + aplx + 1G24+ a8 5 = 2 (3.10)
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3.3 RESPONSE

For a stationary case, equation (3.10) reduces to

@ 2 &’ p

—x;+g(2ga)nxp)+con[x+/1G(x)]—-—+7zzS'0 =0 3.11)
for which the solution is
p(x,x)=cexp [ mS'n{ +2xa) +Aw? g(x)}]

where

g(x) = | G(&)dE (3.12)
0

The probability density functions p(x)and p(x) are obtained from equation (3.12) as (Roberts and
Spanos, 1990), as

px) = | plx, %)t

2co’ 1
=c, exp [—-—‘;—S@l{—z—x2 +Ag(x)}]

0

where

¢, =1/ exp [—:5— w7 4 ag(x)) Jax (3.13)
o S, 2

and

(0= | plx, %)
S (3.14)
L[, 2000 1

§0y (1 12y
z\ S, mS, 2
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The variance of the velocity response is
[ %7 p(x)a

s, (3.15)
2w,

Ok

From equations (3.13) and (3.15), the probability density function for the displacement response can be

written as
a’i 1,
p(x)=c, exp [—?{;x +4g(x)}]

with
c, =]/f exp [—w’,‘ {lxz + Ag(x)}]dx (3.16)

X

3.4 EXTRACTION OF BEARING STIFFNESS PARAMETERS

The bearing stiffness parameters are obtained from the experimentally obtained random response in terms
of the linear parameter @: and the nonlinear stiffness parameter 1. These parameters are obtained for
both, the vertical and horizontal directions, the problem formulation, in the horizontal direction, remaining
identical to that in the vertical direction. (The stiffness cross-coupling in rolling element bearings being

negligible, the goveming equations in the vertical and horizontal directions are taken to be independent,

during the entire course of the present study.)

The probability density function for any two displacements x, and x,,, (x,,, > x,), from equation (3.16)

are

2

P |

px)) = epexp -5 (- x? +2g(x;)}] (3.17)
o~
X
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and
7
px, ) =cpexp [~ ,{ ~x7,; + 280, N (3.18)
Defining
Ax; =X, —X; (3.19)
so that
:+1 =(x; +Ax,; )?
(3.20)
~ x,.2 +2x,;Ax;

for small Ax,
and
8(x;) = g(x; +Ax;)

dex) (3.21)

x
~ g(xl ) + fix I.\‘:.r,r Axi
and substituting from equations (3.20) and (3.21) into equation (3.18), gives
2
_ o \E 3 f dg(x
P(xi)=c exp [-—{=x; "gul.mx,. }Ax, ] (3.22)
o; 2 dx
Combining equations (3.22) and (3.17) gives
@, dg(x
P(¥) = PUx,) exp [ { +2 B0 ax) (3.23)
For N displacement values, X,,Xx,,......... ,Xy ,equation (3.23) can be expressed as a set of N-1 linear
simultaneous algebraic equations, as,
p(x;) dg(x)
In| ]( 7)o ey A=

Ax,— p(x,.,) @, dx (3.24)

P=12 . N-1
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Equations (3.24) are solved for I / a)fl and A , using the least square fit technique. The variance, o‘i and
the probability function, p(%), are computed from the experimentally obtained displacement and velocity
data (xand x ), which are taken as zero mean Gaussian processes and the nonlinear spring forée provided
by the rolling element bearings is taken to be cubic in nature i.e. G(x)=x’, based on the work of
Ragulskis et al (1974). They conducted exhaustive experimental work on isolated ball bearing and found

that cubic nonlinearity best fits their experimental data. Subsequently several other researchers have also

employed the cubic nonlinearity model.

3.5 EXPERIMENTATION

The laboratory rig for the experimental illustration of the technique is shown in Figures 3.2, 3.3 and 3 .4.
The rig consists of a disc centrally mounted on a shaft supported in two identical ball bearings. The shaft is
driven through a flexible coupling by a motor and the vibration signals are picked up (after balancing the
rotor, balancing is done at 1000 rpm and vibration signals are picked up at that speed only) in both, the
vertical and horizontal directions, by accelerometers mounted on one of the bearing housings. The signals

from the accelerometers are digitized on a PC/AT (Figure 3.5) after magnification. (The specifications of
the instrumentation is given in the Appendix - A)

Typical displacement and velocity signals. in the vertical direction, picked up by the accelerometer are
given in Figures 3.6 and 3.7. The probability density function, p(x), of the displacement is shown in Figure

3.8. The bearing parameters estimated from equations (3.24) are -

Vertical direction:
a)f, =542x107 (rads/sec):

A=-127x10° (mm™)

Horizontal direction:

w? =321x 107 (rads/sec)’

A =-129%10° (mm™)

(Refer to Appendix C for statistical Error Table)
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Figure 3.4 Accelerometer mountings on the bearing cap

Figure 3.5 Digital storage oscilloscope connected to PC/AT with GP1B
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3.6 MONTE CARLO SIMULATION

The algorithm is tested by Monte Carlo simulation, for the assumption involved. The values of cufl and A,

estimated from the experimental data, are fed into equation (3.1). A broad band excitation force, f{7), with
zero mean and Gaussian probability distribution, typically described in Figures 3.9 and 310 1s
computationally simulated. This force is also fed into equation (3.1) and the displacement and"’velocity
responses, X and X, are numerically obtained through fourth order Runga-Kutta numerical technique. This
simulated vertical displacement and velocity response is shown in Figures 3.11 and 3.12. The probabilixy'
distribution of the simulated vertical displacement is shown in Figure 3.13. Parameter estimation, as

described in the above subsection is now carried out with the simulated response, by feeding it into equation |

(3.24) to obtain the values of a)f, and A . A similar exercise is carried out to obtain the parameters in the

honzontal direction. These values are listed in Table 3.1.

Table 3.1 Estimated and Simulated Bearing Stiffness Parameters
Parameters
Experimental Simulated
a)i (rads/sec)” | A (mm ™) a)i (rads/sec)” | A (mm ™)
Vertical 542%10° -1.27x10° 5.42x107 -1.29x 10°
Horizontal 3.21x 107 -1.29x 10° 3.21x10° -1.23x 10°

The good agreement between the values of the bearing stiffness parameters, az,’, and A, obtained by
processing the experimental data and those from the Monte Carlo simulation, indicate the correctness of the
experimental and algebraic exercises. It should be noted that the simulated values of the bearing stiffness
parameters are obtained for an ideal white noise excitation, while the experimental ones are obtained by
processing the actual response of the system, where the unknown excitation was idealized as white noise. It
also needs to be pointed out that the value of the damping ratio, ¢, is not required for the estimation
procedure ( equation (3.24) ) . Any convenient value of ¢ can be employed in equation (3.1) for the

purpose of simulation (¢ = 0.02 has been assumed in the present simulation ).
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Figure 3.10 Probability density distribution of simulated random force
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3.7 VALIDATION

The values of the bearing stiffness parameters a)i and A , obtained by the procedure outlined are

compared with those obtained from the analytical formulations of Harris (1984) and Ragulskis et al.
(1974), which are based on Hertzian contact theory.

For a given external radial load R on a bearing (Figure 3.14), the total elastic force at the points of contact

of the ith ball with the inner and outer races is expressed as (Ragulskis et al., 1974)
fi =K, (g+xcosn,+ysinn,)*? (3.25)

and its projection along the line of action of the applied force is
F,=K, (g+xcosn, +ysinn,)’” cosn, (3.26)

where g is the radial preload or preclearance between the ball and the races and x and y are the
displacements of the moving ring in the direction of the radial load and perpendicular to the direction of the

radial load respectively. 177, is the angle between the lines of action of the radial load (direction of

displacement of the moving ring) and the radius passing through the center of the ith ball. K, is a

n

coefficient of proportionality depending on the geometric and material properties of the bearing. The

specifications of the test bearing are given below.

Ball bearing type SKF 6200
Number of balls 6

Ball diameter 6 mm
Bore diameter 10 mm
Outer diameter 30 mm
Pitch diameter 20 mm
Inner ring ball race radius 3.09 mm
Outer ring ball race radius 3.09 mm
Allowable pre-load 0-2um

Rotor mass per bearing 0.41 Kgs



Figure 3.14 Line diagram of loaded bearing
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The value of K, for the test bearing with above specifications, is estimated by the method suggested by

n?

Harris (1984) as 2.82x 10° N/mm '~ .

The total elastic force in the direction of the applied force is
F= Z F, 3.27)
i=1 .

where 7 is the total number of balls in the bearing,

Using the condition of zero elastic force in the direction perpendicular to the elastic load, the deformation,

y, perpendicular to the radial force line is expressed as

S g+ xcos(n,)*sin (7,)
y = 1=l (3.28)

n

Z[g+xcos(17,. )]HzSinz(Ui)

i=1

Equations (3.26) and (3.28) are used in equation (3.27) and the bearing stiffness is determined as a function

of the deformation x as
k(x)=F/ & (3.29)

Substituting equation (3.27) in equation (3.29), taking into account equation (3.28) the bearing stiffness is

expressed as a function of deformation as

k(x)= K"i[g+xcos n; —(A/Bn)sinn,; 1¥*[cos 17, —{CBn— AD(n-1)}/ (Bn)? sinn, Jcos 1,
i=1

where
A=Y [g+xcosn, T sinn; B=Y[g+xcosn, ] sin’ n,
- . (3.30)

C=Y[g+xcosn,]"* sinn, cos,; D=Y[g+xcosn, 17 sin® n, cosn,;

i=] i=1
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It can be seen that the bearing stiffness is critically dependent on the preloading, g, of the balls. While the
manufacturer, may, at times, provide the preload range, the exact value of the preloading of the bearing
balls in the shaft-casing assembly, especially during operations which have involved wear and tear, would
be difficult to determine. The stiffness of the test bearing is plotted in Figure 3.15 as a function of the radial
deformation, x, for various allowable preload values, g. The bearing stiffness obtained experimentally,
using the procedure developed, also shown in Figure 3.15, shows good resemblance to theoretically
possible values. It is also to be noted that the theoretical stiffness calculations are based on formulations
which analyse the bearing in isolation of the shaft. The comparison between the experimental and
theoretically possible stiffnesses is also listed in Table 3.2. The expressions for the theoretical stiffnesses in
Table 3.2 have been obtained by curve fitting the stiffness values obtained from equation (3.30), through a

quadratic in x.

Table 3.2 Estimated and Theoretical (Ragulskis et al., 1974; Harris, 1984)

Bearing Stiffness Parameters

Preload Theoretical Stiffness Estimated Stiffness
(mm) (Radial) (N/mm)
(N/mm)

0.0002 | 120x107-4.01x10%x7

1.32 x 107-5.08 x 10"’ x” (horizontal)

0.0003 | 147x107-2.18x10"%x?

0.0004 | 169x107-142x10""x’

0.0005 | 189x107-1.02x10"x?

2.23x107-850x 10"°x? (vertical)

0.0006 | 208x107-6.09x10°x’
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Figure 3.15 Stiffness comparison

1,2 - Present study (In vertical and horizontal directions respectively)
3,4,5,6,7 - Harris (1984) and Ragulskis et al. (1974) with prelaod
0.0002, 0.0003, 0.0004, 0.0005 and 0.0006 mm. respectively (In any

radial direction)
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3.8 REMARKS

The stiffness parameter estimates, from the procedure developed, show good agreement with the analytical
formulations available for isolated ball bearings. The advantage of the proposed methods over other
available technique§ is distinct from the fact, that it does not involve measurement of the excitation forces
and works directly on the random response signals, which can be conveniently picked up at the bearing

caps and also that the procedure does not require the damping in the system to be known.



CHAPTER 4

BEARING STIFFNESS ESTIMATION
IN FLEXIBLE SINGLE-DISC ROTORS

The bearing stiffness estimation procedure, described in Chapter 3, becomes more involved, if the
shaft flexibility is taken into account. In contrast to the rigid rotor case, which could be treated as a
single degree freedom problem, the flexible rotor poses a nonlinear multi-degree of freedom
problem. The excitation to the balanced system is taken to be random in nature, primarily arising
out of bearing and assembly imperfections. The problem is formulated for a flexible shaft carrying
a centrally located rigid disc and supported at the ends by nonlinear bearings

4.1 EQUATIONS OF MOTION

A balanced rotor, with a centrally located disc on a massless flexible shaft supported in bearings at
ends is shown in Figure 4.1. The shaft is treated as free-free body, carrying unknown effective

bearing masses #7, and 7, at its ends and the known disc mass m, in the center. The bearings are
incorporated through extemal “forces”, F, , acting on masses m, and m,. Taking the shaft

stiffness and damping forces as F, and F, , respectively, the equations of motion are written as

~-F, —F, —F, =m3, 4.1)
-F, - F, - F, =myX, 4.2)
—F, —F, =mX, 4.3)
The shaft stiffness forces are

Fs‘ = (k“xl +k,x, +k,3x3)

Fs, = (kuxl +k,,x, +k23x3)

F, = (ky3x, +kysx, +ks33x;5) 4.4)
The shaft stiffness parameter k,j is defined as the ith force corresponding to a unit j deflection with

all other deflections held to zero and can be obtained from Strength of Materials formulae.



Figure 4.1 Flexible rotor on rolling element bearings

Bearing center line
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The shaft damping forces are

Fdl =(a X + A X, +a3X;)
Fd2 =(apX;) + X, +ayX;)

Fy =(a3%; + g%, +agx;) (4.5)
Shaft damping parameter, ¢ , can be defined in a manner similar to k,j .

The excitation to the system is taken to be random in nature, as in the previous chapter, mainly
arising out of the bearing surface imperfections, caused by the random deviations from their
standard theoretical design and progressive surface and subsurface deteriorations. Sources such as
inaccuracies in the rotor-bearing-housing assembly etc. can also contribute to the random

excitation.

Taking s, and s, as the effective random displacements at the bearings, primarily due to surface

imperfections and inaccuracies in the rotor-bearing-housing assembly, the bearing forces on masses

m, and m, can be written as

F, {k,1 (x1 - sl) +ky, G(x1 R Sl)}

F, ={k,, (¥, — %) +ku, G(x, =5, )} 4.6)

In the above .k, and k,, are the unknown linear and nonlinear bearing stiffness parameters and

G can be a polynomial in x.

Equations (4.6) can be rewritten, more generally, as

F, ={k,x, +ky,G(x)} = F(1)
F;z = {kszz +'kNL2G(x2 )} - F,() 4.7

where F(¢) and F,(t) arethe random components of the bearing forces.
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Using (4.4), (4.5) and (4.7) the equations of motion (4.1-4.3), can be written as

m 0 0]|% a, a, a;,l|l% NV (x,,%,,%;) ] &, F
0 my, O R¥ r+la, ap %+ (x,x,,x,)/ &, = F, (4.8)
0 0 ml||%, A3 Oy Qg || X, NV (x,,%,,%;)/ &, 0

where

1 , 5, 1 1
_ 1 15 2 2 2 2 2 2
V(x),%;,%3) = mzl:zwuxl + 2‘“22"2 +§w33x3 F@,X,X; T WX, X3 + W 13X, X

1 1
| 035 02 gt + 304 ) Aass )| ®
g(x) = [ G(&)a¢ (4.10)
2 i
w —
v m,
k
my
k
A= 4.11)
@, m;

42 ORTHONORMAL TRANSFORMATION

The Markov vector approach extended to nonlinear multi-degree-of-freedom systems (Nigam,
1983) is adopted for the solution of equations (4.8).

The equations of motion, (4.8), with damping and forces F| and F; set to be zero, are solved for

eigenvalues p?,ps, p2 and orthonormal modal matrix [U1, so that



ki ky o ky pi 0 0
[U]T ki, ky ky [Ul=| 0 P22 0

_kn kys Ky 0 0 P32

m, 0 0 1 00
[UT1'{0 m, 0 |Ul=|0 1 0

|0 0 my 0 0 1

(The eigenvalue and eigenvector matrix elements are given in Appendix -B.)

Application of coordinate transformation

X T
x, p=[UKm,
X3 3

to the equations of motion, (4.8), yields,

[ 1 ]
—WN(1,,0,,0)/
IY; (17y,72,13) / &m,

100 771 a =0 0 f-h 11 9,
01 ORmp+| O By O Up! +1 T/[—W(ﬂh’h”h)/ﬁ’h L= qd,
001 175 0 0 Bullm 2 8

1
J/I—-W(m,nz,m)/ﬁﬂ;
3 J

where
By O 0 a, G, Oy
0 ﬂzz 0 =[U]T o, O Qo [U]

0 0 fBy a;; Qg Qs

38

(4.12)

(4.13)

“4.14)

(4.15)

(4.16)
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1 1
V(n,,m,,15) = ms[aa’fl(’h tuyn, '*'u:.>1773)2 +Ew§2(771 U1, Uy, )2

1
+'2"w§3(’71 +n, +1, )2

2 ,
+@1, (M Fuy 0y +uy sy Xy Funn, +uyn;g)
A .
Fw33 (g F U1, Fupn Xn, + 0, +13)

+wf3(771 tuy 1, Fuy ) 0, +'73)]

1
+ms|:‘2‘wi, (7, +uyy 1, + 1y my) +w:,’11g(771 +uy M, +uyM;)

1
+5w2nz(771 FUp T, T Uy, )’ +wf,2/12g(771 tuy,1, +u22773):l 4.17)

9 £y
7, 1 =[UY {5, (4.18)
9 0

and the modal masses M|, M, and M, are given by
M, =m, +m, +m,

.2 2
M, =u;m, +m, +ui,m,

M, =ulm, +m, +u,m, (4.19)

The approach to obtaining the response of the system is simplified, as in Chapter 3, by making an
engineering assumption that random excitation to the system is such that the generalized forces ¢,,
in equations (4.15) can be treated as ideal white noise. An argument, similar to that in Chapter 3,
can be given regarding this idealization, that, it tumns out that the response obtained through such
models are quite acceptable if the time scale of the excitation is much smaller than the time scale of
the response (Lin, 1973). The excitation of equation (4.15), is treated as uncorrelated Gaussian,

white random forces with the following properties

E[q,(0]=0; E[g,(1)]=0; E[q,(1)]=0



and

E[ql(tl )9, (1, )] =279,0(t, -t,)
E[‘?z (1)g, (1, )]= 276,6(t, -ty)

E[Qs(tl)% (2, )] =27936(t, -t,)

where ¢,,¢, and @, denote the excitation intensity factors.

4.3 F-P-K EQUATION

Rewriting equations (4.15) as

i+ Bun+ (L MYV (1y,1,,m5)/ Oy = ©
and then, in state space form as

on; /&=i7i
0’1’.71' /d‘=q, -,3,-,-'7,- —(I/Mi)(W/‘%h)
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(4.20)

i=1,2,3 4.21)

(4.22)

the drift and diffusion coefficients (refer equations (3.5 - 3.7) ), for equations (4.22) can be written

as

a, =1, a, =1, a, =1,

b, =q, = Buin — (1 M)IFV (1y,12,15) / 1]
by =gy — Bayity — (L M)V (11,112,713) 1 9, ]
b, =q; — By — (1 M)V (1,,71,,15) 9151

and

(4.23)

(4.24)
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With the help of the above, the joint probability density function, p(7,,7,75,>4,75), for

the motion govermned by equations (4.15) can be described by the Fokker-Planck equation

. » 1 a & a( : apj » 1 &V »p
~fy S —+t——| Buip+m =1 -
l on, M, on, on whp * 79, an, T on, M, on, on,

o (. @)_. »_ 1V, ( @J_é)
+0,,7.72 (ﬂzzn2p+”¢2 o, n; on, M, on, 57, 5773 1833773P+7[¢3 2, "?&T

44  RESPONSE

For a stationary case equation (4.25) reduces to

b1 I P ( o})) . » 1 &V p
-1 - Bump + - - ;
l5771 M, on, on, 5771 e la771 ? on, M, on, on,

@)) »_1 I D, ( @»)
~ & E + 0
i)~ Gy My om, o0, s\,

(4.26)

i .
s (/322 n,p+7g,
7,

With an assumption (Caughey, 1963)
By M) = (B3 I Myd,)=(fy | Msp3) =y

equation (4.26) can be solved to obtain the joint probability density of displacements and velocities

in terms of the transformed coordinate system as
P(11, 712513505 1125 13) =ceXP[—%{Mliﬁ 12+ M,y 12+ My 12 +V(n1,772,773)}] (4.27)

Performing the inverse orthonormal transformation and noting that the term

Mliyf /2+M21'7§ /2+M3i7§ 124V (1,,M45,M3)
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on the right hand side of equation (4.27) represents the total kinetic and potential energy of the
system and that ¥ is a constant, the joint probability density of displacements and velocities in the

original set of coordinates is
P(X,,%,,%5,%,,%,,%;) =¢ exp[——};; {mlxl2 +mX%; +mxs +V(x,,%,,%; )}} (4.28)

The joint probability functions p(x,,x,,x,) and p(X,,%,,%,) are obtained from equation (4.28)
as (Roberts and Spanos, 1990)

o0 0

PO, 0) = [ [ [ ey, %305, %, %, )t by

—00—00—00

=6 expl:-——y—V(xl, Xp5%3 )}
T

with

“= Ijjexp[_%V(xl>x2’x3)}bcldxz d, (4.29)
and

P(J'Cl,xz,fg):_."jjp(xl,xz,x3,xl,xz,x3)dxldxzcbc3

3
Ly il . : .
=[; \/;] Jmmym, exp{—;{-?:(mle +m, X2 +my%l )}:\ (4.30)

The joint probability function p(x,,x,) is obtained as

p(x19x2) = J.p(xl’xzrxa )dbx,

= jc1 exp[—{;{V(xhxz’%}}ix:%
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my |1 N 1 w3 )
= ¢, exp| —— 1| @, +o? —-—LB|x?+-| 0 +0> -2 |x]
2 m 2 1 2 22 ny 2 2
33 @33/

2

, -

;0

+\(Ufz - ;2 23jxlxz +(w:,ll)g(x1)+(w:,)'2 )g(xz)}
33

with

7z- 2 o o0 o0
G, = (;0_ ] JIJCXP[“Z—V(xl,xz,x:‘):Fxldxz dx, (4.31)
3 T

myy

The probability density function p(X,)and p(x,) are

p(x,) = I j.P(i?l,sz,f% )d, dx,

—0—0

|1 jmy _yjlo e
Lol sfe]

p(x,) = j jp(ilax27x3)a&16ﬁ3

1 |m i | %
=|:;1’—;—y]exp{—%{5mzx§ H (4.33)

The variances of velocity responses X, and X, are obtained as

o0

o, = [l p(d)a,

-1 (4.34)
ny
o}, = [#p(x, ),
- (4.35)

m,y



Combining equations (4.34) and (4.35)

T 1

(4.36)

¥ X

Y Jmym,

The joint probability density function for the displacement responses x,and x,, from equations

(4.31) and (4.36), can be written as

HiH 1 a)4 1 4
plx, %) = ¢, exp| - VEE2 {E[wa +o} —;;i}cf +E[a)§2 vo? - On ]

| 949 " 33 " w§3
/ , ool
H @, __1_32A)x1x2 +(a)i‘ﬂ'1)g(x1)+(a’izﬂz )g(x,)
\ @ 33
with
6= ('—‘ ’“_)/J‘ J. _“exp|:_'—/‘l‘l‘/iz—V(x1’xzax3 )Fldxz dx3
n, m,
My =—; My =— 4.37)
m, &

45 EXTRACTION OF BEARING STIFFNESS PARAMETERS

The bearing parameters are obtained from the experimentally obtained random response in terms of

the linear stiffness parameters @> ,@> and the nonlinear stiffness parameters A,, A, and the
P n 2 @n, p 1> M2

disc-bearing mass ratios 4, and i, . These parameters are obtained for both, the vertical and

horizontal directions, the problem formulation, in the horizontal direction, remaining identical to

that in the vertical direction.

The joint probability density function p(x,,x,) for a set of displacements (x1,>xz,)

(X1 5 X2¢01y) - (x,,,, 2%, and X, )%, ) , from equation (4.37) are



45

— VHIH, |1, 2 03‘1‘3 2 1 2 Cz);; 2
p(xli,xzj)—czexp - —| o], tw. - X, +§ Wp +0, ——5|%,

n 2
O-"‘n O—*z 2 @33 @ 35

2

( 2 w?swzs 2 2
Hon——5 |55, +(0, 4,)8(x,) +H(@] 1,)8(x,) (4.38)

\ o3,

NEH, |1, 2 w?s 2 | 2 CU: 2
p(xl(m),xzum )=¢, epr:————— 2 oy o, —— Xt 0, o, - 2x
3 a)33

2(js1)
0403, @33 2 ’

2 2

2 _ @D13W0a 2 2

+(a) 12~ w2 X1 X2, T (wn, A4 )g(xl(m, )+ (C’)n2 A, )g(xz(m, )
33

Defining

Axli =x1(i4l) X, Ax,

=X -x
J 23541 2

for small Ax, and Ax, , onecan write

4 4\
NHH, T, 2 WOp ) o, I o, 2 Wiy | 2
P(xl(,.m,xz(jm)= ¢ exp{— '2' o, taw, = Xy, +'2" Wy tw, — X,

n 2 2 .
00y, i 33 w33/ 7
who; |
g 13923 2 2 .
HoOp— ) X%, +(a)nlj’l)g(x11)+(a)nzﬂ'2 )g(xzj)
33
VH1H, o) 2 2 _ O3
exp| — w?l +a’;2:, "“_;3' (3, 8%, ) +| 03 + @, —— (xszxzj)
0;0s% @33 33

2
@33

2 2
'{wfz _21_3_‘?_23_)(% Ax, +x, Ax, )+ (@}, A,)G(x, A%, +(@},2,)G(x, JAx; H (4.39)

Combining equations (4.39) and (4.38) gives
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p( ‘(ul), 2(_]4‘1 )

4

#1/‘2 wf} 2 . W
p(x,,,x; )exp| - o +o n, - |(x,Ax))) +| w3 + @, - ;3 (x2,Ax, )
@ i w J J

33 33

2 wl3w23 2
@y ~ e (%, A%, +x; A’fl,f)+(60n,/7~ )G(x) )Axy +(@,, 4,)G(x, )Ax,

33

(4.40)

For N values of each displacements, X5 Xq, peeenneen X, and X, X, .. 2 Xg, s equation

(4.40) can be expressed as a set of (N —1)* linear simultaneous algebraic equations, as,

00, n p(x,, %)) 1 G(xL {,1 \ G(xzj) Ap@02
Ax) Ax, | p(x,,, -%,,,) yl,uza),z,l | Ax, wf’l
4 2 2
(4] X X b X
+ ( ;3 —wil)( . )*‘(9_;3_"‘022)( " ]"” ww?n "a’fzJ R lz
@33 Axy, @ 33 Ax,, D33 Ax,  Ax, )| o,

L{ T S } (441)

Equations (4.41) are solved for co;‘:l ] a)iz,/ll,/lz ,and /i, [, , using the least square fit
technique. The joint probability function, p(x,,x,) and variances, o*f.,l and Uiz are computed
from the experimentally obtained displacement and velocity data (x,,X, ,X,and Xx,) , which are
taken as zero mean Gaussian processes and the nonlinear spring force provided by the rolling
element bearings is taken to be cubic in nature i.e. G(x) = x*. The stiffness-matrix defined as for
the three body lumped-parameter shaft model ( Figure 4.1) can be defined as (Childs, 1993)

w?l, w0l ol 1 -1 0

12
12E1
[K]=m| 0} 0} o3 = -1 2 -l (4.42)

2 2 2 -
Wy Wy @O 0 I

—
w



4.6 EXPERIMENTATION

The laboratory rig, described in Chapter 3, is employed for experimental illustration of the
procedure. Typical displacement and velocity signals, in the vertical direction, picked up (after
balancing the rotor) by the accelerometers mounted on the two bearing housings are given in

Figures 4.2, 43, 44, and 4.5. The joint probability density function, p(x,,x,), of the

displacements is shown in Figure 4.6. The following set of data is taken for the rotor

EI =1.03 x 10® N-mm?

my =0515kg

L=250.0 mm.,

The parameters estimated from equations (4.41) are given in Table 4.1.

Table 4.1 Estimated bearing stiffness and mass parameters
Parameters Vertical Horizontal
®> (rads/sec)’ 2.13 x 10 2.12 x 10
A, (mm)? -1.25 x 10° -1.41 x 10°
@>  (rads/sec)’ 1.98 x 10’ 221 x 10
A, (mm)? -1.15 x 10° -1.36 x 10°
f 1 [ 2.10 2.34
172

(Refer to Appendix C for Statistical Error Table)
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4.7 MONTE CARLO SIMULATION

The algorithm is tested by Monte Carlo simulation. The experimentally obtained values of
2 2

0),,‘,0),,2,/11,/12 and ,/p,u, are fed into equation (4.8). Broad band excitation forces,

Ji(#)and f,(¢) with zero mean and Gaussian probability distribution as described in Figures
4.7, 4.8, 4.9 and 4.10, are computationally simulated. These forces are also fed into equation (4.8)
and the equations are numerically solved through fourth order Runga-Kutta to obtain the
displacement and velocity responses, X,,X,,¥,and X,. These simulated displacement and velocity
responses, at the two bearings, are shown for the vertical direction in Figures 4.11, 4.12, 4.13 and

4.14. The joint probability distribution of the simulated vertical displacements is shown in Figure
4.15. The simulated response is now fed into equation (4.41) to obtain the values of

a)il ,a)i2 ,A1,A, and Ju, u, . A similar exercise is carried out to obtain the parameters in the

horizontal direction. These values are listed in Table 4.2.

Table 4.2 Estimated and simulated bearing stiffness and mass parameters
Vertical Horizontal
Parameters Experimental Simulated Experimental Simulated
@? (rads/sec)’ 2.13 x 107 2.12 x 107 2.11 x 107 221 x 107
A, (mm)? -1.25 x 10° <141 x 10° -1.29 x 10° -1.45 x 10°
@ (rads/sec)’ 1.98 x 10’ 221 x 107 1.95 x 107 223 x 107
A, (mm)? -1.15 x 10° -1.36 x 10° -1.63 x 10° -1.86 x 10°
[, 2.10 2.43 234 2.50
172

The good agreement between the values of the bearing stiffness parameters, a)f,l ,a)i2 ,A,4, and

VA1, , obtained by processing the experimental data and those from the Monte Carlo

simulation, indicate the correctness of the experimental and algebraic exercises. It should be noted

that the simulated values of the bearing stiffness grameters are obtained for an ideal white noise
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excitation, while the experimental ones are obtained by processing the actual response of the
system, where the unknown excitation was idealized as white noise. It also needs to be pointed out

that the values of the damping parameters &, are not required for the estimation procedure
(equation (4.41) ) . Any convenient set of values of o 4 can be employed in equations (4.8-4.11)

for the purpose of simulation.
4.8 VALIDATION

The analytical formulations of Ragulskis, et al. (1974) and Harris (1984), described earlier in
Chapter 3, are used to validate the stiffness parameters obtained from the experimental signals,
through the procedure developed. The bearing stiffness expression obtained from the analytical
formulations given in the literature mentioned above, are listed in Table 4.3, under the column
“Theoretical Stiffness’. The stiffnesses estimated for the two bearings, through the procedure
developed, are also listed in Table 4.3.

Table 4.3 Estimated and theoretical (Ragulskis, et al., 1974;

Harris, 1984) bearing stiffness parameters

Preload Theoretical Stiffness Estimated Stiffness Estimated Stiffness
(mm) (Radial) (N/mm) (N/mm)
(N/mm) (at bearing 1) (at bearing 2)

0.0002 | 1 20x 10*-4.01x 10" x?
1.08x 10*-4.19x 10" x* | 1.01 x 10*- 4.91 x 10" x?
(horizontal) (horizontal)
0.0003 | 147x10*-2.18x 10" x?

0.0004 | 169x 10*-1.42x 10" x?

0.0005 | 1.89x 10*-1.02x 10" x?
1.10x 10*-4.13x 10" x? | 1.02 x 10*-3.52 x 10"° x?
(vertical) (vertical)

2

0.0006 | 208 x 10*-6.09%x 10° x
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As emphasized in the earlier chapter, the bearing stiffness is critically dependent on the preloading,
g, of the balls. The exact value of the preloading of the bearing balls in the shaft-casing assembly,
especially during operations which have involved wear and tear, would be difficult to determine.
The stiffness of the test bearing is plotted in Figures 4.16 and 4.17 as a function of the radial
deformation, x, for various allowable preload values, g. The bearing stiffness obtained
experimentally, using the procedure developed, also shown in Figures 4.16 and 4.17, shows good
resemblance to theoretically possible values. It is also to be noted that the theoretical stiffness
calculations are based on formulations which analyse the bearing in isolation of the shaft. The
comparison between the experimental and theoretically possible stiffness is also listed in Table 4.3.
The expressions for the theoretical stiffness in Table 4.3 have been obtained by curve fitting the
stiffness values obtained from equation (4.41), through a quadratic in x.

In the analysis, presented in Chapter 3, where the shaft flexibility has not been accounted for and
the shaft is treated as a rigid body, the bearing stiffness for the same experimental set-up was
found to be 1.32 x 10*-5.08 x 10" x> (N/mm) and 2.23 x 10* - 8.50 x 10" x* (N/mm) in the
horizontal and vertical directions respectively (Refer Table 3.2). A comparison with the stiffness
values of Table 4.3 reveals the influence of shaft flexibility.

While a good agreement on the bearing stiffness parameters is observed between the values
generated following the method of Harris (1984) and Ragulskis et al. (1974) and those obtained
experimentally through the present procedure, the values of the effective masses at the bearing

ends, obtained as by-products of the present procedure, also look reasonable. The experimentally
obtained values of /4,4, are 2.1 and 2.34 (Table 4.1) in the vertical and horizontal directions

respectively. If the two bearings were taken to be identical, the effective mass computed (knowing
that the disc mass is 0.515 Kgs) for each of the bearing ends tums out to be 0.245 Kgs in the
vertical direction and 0.220 Kgs in the horizontal direction. These values look reasonable, in view
of the fact that along with some contribution from the bearings themselves, a division of the mass

of the shaft, which in this case is 0.306 Kgs, is seen at the two bearing ends.
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4.9 REMARKS

The inverse problem for the flexible rotor, features a nonlinear multi-degree-freedom system and
the essential feature, of the approach to the inverse problem of parameter estimation is an
appropriate coordinate transformation, so as to enable the governing equations to be modeled as
Markov Processes through the Fokker-Planck equations. In addition to the salient features of the
estimation procedure already mentioned in the earlier chapter, accounting for the shaft flexibility,

also enables to obtain estimates of the effective masses at the bearing stations.



CHAPTER 5

BEARING STIFFNESS ESTIMATION
IN MULTI-DISC ROTORS

The parameter estimation problem in rotors carrying more than one disc on flexible shafts is
considered next. The govermning nonlinear differential equations for such multi-mass flexible
systems are derived for balanced rotors with random excitation at the bearings. The governing
equations are subjected to a coordinate transformation and modeled as Markov Processes. General
form expressions, for the first order probability statistics of the response are obtained. The

statistical response is processed to extract the rotor-bearing stiffness parameters.

5.1 EQUATIONS OF MOTION

A balanced rotor, with n discs mounted on a massless flexible shaft supported in nonlinear
bearings at ends is shown in Figure 5.1. The shaft is treated as free-free body, carrying unknown
effective bearing masses m, and m, at its ends and the known disc masses my,m,,...,m,,, .
Following the procedure mentioned in Chapter 4. for incorporating the bearings through external

“forces”, F, , acting on masses my and m, and taking the shaft parameters to be linear, the

equations of motion are written as
[MUX} +[ANX} +{F" ] X} = {F} (5.1)

where {X} is the displacement vector, [M] and [4] the mass and damping matrices respectively,

(Fy={F, F, ...... 0}t (5.2)
V(%0 Xy ) = (1 XY ([KTHIK DX+ {8(0)} [K o He(x)) (53)
(g =( ([ G@dn"*  ([[G@dY"? 0} (5.4)

[K] is the shaft stiffness matrix and the linear and non-linear stiffness matrices of the bearing,

respectively, are



mpo

Figure 5.1 Maulti disc rotor on rolling element bearings
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o (5.9

5.2 ORTHONORMAL TRANSFORMATION

The Markov vector approach extended to nonlinear multi-degree-of-freedom systems (Nigam,
1983) is adopted for the solution of equations (5.1). Equations of motion, (5.1), with damping and

force F; set to zero, are solved for eigenvalues p?,i=12,...,(n+2) and orthonormal modal

matrix [U], such that

[UT[KIU]=[p*]

T (5.6)
(U1 IM][U]=1]
where [ p? ]is the diagonal eigenvalue matrix, while [I] is an identity matrix.
Application of coordinate transformation
{X} =[Ul{n} (5.7
and premultiplication by [U]" , the equations of motion, (5.1), yield,
ﬁi+/Bihi+(1/Mi)aV(nnnz:'”:n(nﬂ))/577;' =dq; i=1,2,.,n+1 (5.8)

M, is the modal mass. Modal damping matrix [/] and the generalized force vector {g} are

(81=[UT []U]

{gy =[UY{F} G-9)

and the potential energy, in generalized coordinates, can be expressed as
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V(1257 My ) = 1/ {7 T [UT (K] +[K, DIV}

5.10
He((UN} Ky He(U{nh)) ( _ :

The approach to obtaining the response of the system is simplified with the engineering assumption

that the random excitation to the system is such that the generalized forces, g; , in equations (5.8)

can be treated as ideal white noise. Treating the excitation of equation (5.8) as uncorrelated

Gaussian, white random forces with the following properties

E[qi(t)]=0

(5.11)
E[Qi (2,)g;(2, )] =279,6(t, -t,)
where ¢, denotes the excitation intensity factor and &(f, —#,) is a Direc delta function.
5.3 F-P-K EQUATION

Rewriting equations (5.8) in state space form as

on; | & =n;

i=1,2,...,n+2 (5.12)
on, | &=q; = Byn; =L/ M)V 1dn,)

the drift and diffusion coefficients (refer equations (3.5 - 3.7) ), for equations (5.12) can be written

as
o : jiEoan e
bj =4; —:Bjji?j —(1/Mj)[ﬁV(nlarl2a“',’7n+2)/077_]']
and
¢; =0
i=12,...,n+2
d.l.l =27[¢J _j=1,-2,---,n+2 (514)
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With  the help of the above, the joint  probability density function,
p(m,qz,---,77("+2),i71,i72,---,i](,,+2)), for the motion governed by equations (5.14) can be

described by the Fokker-Planck equation

n+2
p_1 ¥ p 7 P P

Z[ “on. M, on, o, ;}7—1(,3,,77 p+ g, 5’7.) == (5.15)
5.4 RESPONSE
Fora stationary case equation (5.15) reduces to

n+2 '

P 1T e _é_( AN

;[ v o A IR (5.16)

With the assumption

B! M\py =By Myp, =...... ﬂ(n+2)(n+2) /M(n+z)¢(n+2) = A

equation (5.16) can be solved to obtain the joint probability density of displacements and velocities

in terms of the transformed coordinate system as

.. ) Yl L .
p(m,nz,---,m,.m,nl,nz,---,n(,.m)=cexxv[—;{5{n}T[M]{n}+V(f71,'72,-~,r7<,,+2,)H

(5.17)
Performing the inverse orthonormal transformation and noting that the term

(/2T MY +V (100257 ey
in the bracket on the right hand side of equation (5. 17) represents the total energy of the system and

that y is a constant, the joint probability density of displacements and velocities in the original set

of coordinates is



1

. . . . A -
P(X15 %2, X ez s X1, %3577, X9 ) = cexp[_i{E{X}’[M]{X} +V(x1,xz,"-,x(n+z))H

(5.18:

The joint probability functions p(x,,X,,",X(,.,,) and p(%, %5, -, % ,5)) are obtained fic -

equation (5.18) as (Roberts and Spanos, 1990)

© ® oo
p(xl ,x2,..-,x(n+2))= J- J----J-p(xl,xz,---,x(n+2),Jkl,xz,---,Jk(,l+2))c&1¢i;&2...¢b'c("+z)

-0 =00 -0

4
=c exp‘:—; {V(x1 %2277 X (e2) )}]

with
o' = TT---Texp[—-%{V(xl,xz,---,x(,,+2))}:|a5clcbcz---aSc(MZ) (5.19)
Also

o 0 o«
PAXy,Xn 0, X)) = I I"'JP(xhxza""x(n+z>~x1axz=""x(n+2))‘b‘xdx2"'fb‘7(n+z)
-0 —0 -0

(3.20)

(n+2)
L 71 » Y l (T )
={— E:\ NN s exp{ ”{2 {X} [M]{X;H

4

The joint probability function p(x;,x,) is obtained as

plxy,x,) = ]. _[ jp(xl,x2,---,x(”+2))abc3dx4~--(bc("+2)

-0 -0 =00

=0 ]3 ]f T exp\i—-%V(xl,xz,---,x(,,+2)):ldx3rbc4---cbc(n+2)

-0 =00

1
=0y EXP{"};‘{%(Mxn /quzz)xlz +‘2'(Mx11 / quzz)x; +(Mx12 /quzz)xxx:

+hyy, g (x)+ kyi, g (x, )}]

with



‘: \[‘:\ D/II jexp _—V(x"xz" x("*‘z))}k?s‘b‘;“'dx(mz)

(x]=[K]+[K,]

(5.21)
and M, denoting the minors of the matrix [«].

The probability density function p(x,) and p(x,) are

p(x) = ,[ ,['“j‘p(jchi:’ "o gy Yy -

-0 00 a0 (n+2)
(5.22)
1 [my v {1 )
(o]

0

p(x;) = j I Ip(.\",,.\"2,---,.\'f(,,+2))(ii1di3---cii

“ (5.23)
{_1_ /ﬂ}xp{_l’_{lwﬁﬂ
T 2 rl2 °°

The variances of velocity responses X, and X, are obtained as

(n+2)

ot = [ % p(x,)dx,
- (5.24)
=71/ my
i = j X3 p(x,)dx,
- (5.25)
=/ my
Combining equations (5.24) and (5.25)
0,0, =l yN1/ymm,) (5.26)

the joint probability density function for the displacement responses X, and x,, from equations

(5.21) and (5.26), can be written as
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1 1 1
plx,,xy)=¢, Pl: O e, {2 (szz /Mxmz)x1 +2(A’fx‘11 /M:cuzz)xz

+(fwx12 /A’fxuzz)xlxz '*‘kw,,gz (-"71)'*‘/"'3.1:82 (x, )}]

with
n
[27[0'_;,10'_%\/7711171:] 22 = V(xy,%y, %, 0y)
- - R 12 >V (n+2) -
Cc, = . -
: M -[ -[ Jexp 2o FRLLYZ NS 3.27
x1122 o 0 05 \mm,

5.5 EXTRACTION OF BEARING PARAMETERS

Based on the above analysis, the bearing parameters, namely, the linear stiffness parameters

ki .k, the nonlinear stiffness parameters k, , ky, and the bearing masses m; and m,, are

extracted from experimentally obtained random response. These parameters are obtained for both,
the vertical and horizontal directions. The problem formulation, in the horizontal direction, remains

identical to that in the vertical direction.

The joint probability density function p(x,,x,) for a set of displacements (x,,x, )

(X, X2 any) - (X, 0%, and xp Ox; ) from equation (5.27) are

teny

I 1 £ ,
p(x Xy ) =Cy €Xp ""_""“'—"“"{"(szz /Mk‘ll22)x{' +—(A/[x11 / fwxnzz)x:_,
o T O mmy 2 2
+(A’[~12 / A/lem)xx, X2, +hy, gz(xx, ) +k.\’L2g2 (xzj)}]

(5.28)

1 1 2 1 ;
p(xl ,x" ) = C: exp [ ——— Y __(M)CZZ /Mxllzz)xl(,.“ + ) (JM}C” / Mxllzz )xzu-l)
TRt 0y T My (2 i

2 2
+(Mx12 / M;cuzz)xx(, +k«\'Lyg (xluvn)+k-wfzg (xzuvn)}]

X,
-0 A(jeh

(5.29)



Je
efining Ax, =x - . -
D =4 L iy ~ X1 5 szj - xz(j*l) B xzj

for small Ax, and szj , One can write

1 , 1 .
{5(1\4;\-22 /A’Ixuzz)xf, +5(M)\'11 /Macmz)xz-J

p(xl(.«n ’xzum ) =Cy €Xp|
O30, ymm,

+(M, ., / M;\-uzz)xh 2,

thy, &7 () + k. g’ (%, )}]

-1
expl:m {(szz /Mxmz)xl,- Ax, +(Mx11 /Mx1122)x2_, szj

+ (M)cl?.

/Mxnzz)(xl,. sz, +x2ij1,)

+ kg, Gx, A%, + Ky, G(x, )Ax, }]

(5.30)
Combining equations (5.30) and (5.28) gives
-1
p(xy, X, )= p(x X )exp{ (M;;zz / quzz)xli Ax,
Ty, T 4 I,
+ (M / Mxnzz)xz,Ax:,
(5.31)

+(M/c12 /Mxnzz)(xx,sz, +x2]Ax1x)

thyy, G(x, JAx, +hy Glx, Ax, }]

For N values of each displacement, Xy Xy S, Xy and Xy s Xg, seeeeenee ,X,, , equation (5.31)

can be expressed as a set of (N —1)* linear simultaneous algebraic equations, as,
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005, ln{ P(xk,xzj) }{ﬂ/mlmz}_ G(x,,) || kg, G(xzj) Ky

_Axli szj P(xl‘,.m ) x:',um) kL‘ szj .ICL1 Ax, kL‘
Xy, X, x X, 1

- (szz /A’fxuzz) Ax +(Mx11/]\’[x1122) : +(1\’1,c12 I Mg ) —— +—2 | | —
L 2; Ax, Ax, Ax, )| &y,

o V[ ks
H——hl-—

Ax, kL

L 12 N
= L R I=12,.......... J(N -1 =12,. -

ey (N=1  j=12, . (N =1)

(5.32)

Equations (5.32) are solved for k,,| sk, Ky, yky,, and \Jmm, , using the least square fit

technique.
5.6 EXPERIMENTATION

Two discs are mounted at equidistances on the shaft of the laboratory rotor, as shown in Figures
5.2 and 5.3. The shaft remains supported in the same bearings that were used for illustration in the
previous chapters. The shaft is driven through a flexible coupling by a motor and the vibration
signals are picked up (after balancing the rotor) in both, the vertical and horizontal directions, by

accelerometers mounted on both of the bearing housing.

The nonlinear spring force provided by the rolling element bearings is taken to be cubic in nature
(Ragulskis, et al., 1974) 1.e. G(x)= x* . The stiffness-matrix of the shaft model of the rig is
obtained as (Childs, 1993)

[ L0 0
B 0 1 0 -1
KI==—7—11 0 2 -1

0 -1 -1 2

EI =1.03 x 10* N-mm® L=165.0 mm. (5.33)
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The disc masses are
m, = 0515 Kg. m4 = 0.755 Kg.

(The procedure, however, does not require a knowledge of the disc masses.)

Typical experimentally obtained displacement and velocity signals (x;,x,,%and x,), in the
vertical direction, picked up by the accelerometer are gjven in Figures 54, 5.5, 5.6, and 5.7. The
joint probability function, p(x,,x,) and variances, o and o, are computed from the measured
responses. The joint probability density function, p(x;,x,), of the displacements is shown in

Figure 5.8. The bearing parameters estimated from equations (5.32) are given in Table 5.1.

Table 5.1 Estimated bearing stiffness and mass parameters
Parameters Vertical Horizontal
by, (N/mm) 1.04 x 10 0.87 x 10*
ky, (N/mm?) -5.10x 10" -3.50x 10"
ky, (N/mm) 1.04 x 10* 0.86 x 10*
Ky, (N/mm’) -3.62x 10" -2.19x 10"
[mm, (Kg) 0.21 0.20

(Refer to Appendix C for statistical Error Table)
5.7 MONTE CARLO SIMULATION

Monte Carlo simulation is employed to check the accuracies involved in making the engineering

assumptions in the algorithm. The above estimated values of k, ,k;, Koy, ko, and Jmm, are

fed into equation (5.1). Broad band excitation forces, F/(f)and F,(t) with zero mean and

Gaussian probability distribution, as described in Figures 5.9, 5.10, 5.11 and 5.12, are simulated

on the computer and these are also fed into equation (5:1). Fourth order Runga-Kutta technique is
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then employed to numerically compute the displacement and velocity responses, X,,X,,X and x,
The displacement and velocity responses at the two bearings, thus simulated are given in Figures

5.13, 5.14, 5.15 and 5.16, for the vertical direction. The joint probability distribution of the

simulated vertical displacements is shown in Figure 5.17. The simulated response is now fed into
equation (5.32) to obtain the values of & Lok Ky oy, and /m1m:z A similar exercise is

carried out to obtain the parameters in the horizontal direction. These values are listed in Table 5.2.

Table 5.2 Estimated and simulated bearing stiffness and mass parameters
Vertical Horizontal

Parameters Experimental Simulated Experimental Simulated

k, (N/mm) 1.04 x 10* 1.49 x 10 0.87 x 10* 0.99 x 10

ky, (N/mm’) -5.10 x 10" 848 x 10" | -350x10" | -481 x 10"

k, (N/mm) 1.04 x 10* 1.48 x 10* 0.86 x 10* 0.98 x 10*

k . (N/mm’) -3.62x10" | -7.83 x 10" | -219x10" | -323 x 10°
[mm, (Kg) 0.21 0.26 0.20 0.24

The fairly good agreement between the values of the bearing stffness parameters,
ky . ki ky,  ky, and /mm,  obtained by processing the experimental data and those from the
Monte Carlo simulation, indicate the correctness of the experimental and algebraic exercises. It
should be noted that the simulated values of the bearing stiffness parameters are obtained for an
ideal white noise excitation, while the experimental ones are obtained by processing the actual
response of the system, where the unknown excitation was idealized as white noise. It also needs to

be pointed out that the values of the damping parameters «;, are not required for the estimation
procedure ( equation (5.32) ). Any convenient set of values of a,, can be employed in equations

(5.1) for the purpose of simulation.



5.8 . VALIDATION

The bearings in the laboratory rotor rig employed to illustrate the procedure, are the same, as those
used for illustrations in the previous chapters. Table 5.3 makes a comparison between the stiffness
parameters obtained by processing the experimental signals from the two-disc rotor with the

expressions for bearing stiffnesses obtained through the analytical formulations of Ragulskis. et al.
(1974) and Harris (1984), described in Chapter 3.

Table 5.3 Estimated and theoretical (Ragulskis, et al., 1974;
Harris, 1984) bearing stiffness parameters
Preload Theoretical Stiffness Estimated Stiffness Estimated Stiffness
(mm) (Radial) N/mm) (N/mm)
(IN/mm) (at bearing 1) (at bearing 2)

0.0002 | 120x 10*-4.01x 10" x?

087x10"-350%x10° x* | 0.86x 10*-2.19x 10" x*

(horizontal) (horizontal)
0.0003 | 1 47x10*-2.18x 10" x*

0.0004 | 160x10%-142x10" x?

0.0005 | 189 % 10%-1.02x 10" x?

104 x 10*-5.10x 10 x> | 1.04x 10*-3.62x 10 ¥
(vertical) (vertical)

0.0006 J 2.08 x 10*-6.09 x 10° x?

The theoretical stiffness in the above table is dependent on the preloading, g, of the balls, which
may be difficult to guess, for bearings which have involved wear and tear under operation. The
estimated stiffnesses can be seen to lie within the preload range specified by the manufacturer. The
analytical stiffness of the test bearing is also plotted in Figures 5.18 and 5.19 as a function of the

radial deformation, x, for various allowable preload values, g. along with the estimated bearng
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stiffnesses. It needs to be emphasized again, that the theoretical stiffness calculations are based on

formulations which analyse the bearing in isolation of the shaft.

The experimentally obtained values of \/;71—1;_ , @ parameter representing the effective masses at
the bearing ends, are 0.21 and 0.20 (Table 5.1) in the vertical and horizontal directions
respectively. If the two bearings were taken to be identical for each of the bearing ends tumns out to
be 0.21 Kgs in the vertical direction and 0.20 Kgs in the horizontal direction. These values look
reasonable, in view of the fact that along with some contribution from the bearings themselves, a

division of the mass of the shaft, which in this case is 0.306 Kgs, is seen at the two bearing ends.

59 REMARKS

Generalized expressions for the governing equations, orthonorrﬁal transformation, rotor response
provide a compact algorithm for parameter extraction. A comparison between the bearing stiffness
values obtained in this chapter, can be made with those obtained in the previous chapters, since the
test bearings employed in the experimental rigs are the same. The closeness of results is an

indication of the correctness of the theoretical and experimental exercises.



CHAPTER 6

PARAMETER ESTIMATION IN
NON-LINEAR ROTOR -BEARING SYSTEMS WITH UNBALANCE

Estimation of linear and non-linear bearing stiffness parameters, for rotors with unknown unbalance, is
considered in this chapter. The problem is formulated as single degree of freedom system. The case of a rotor
with a rigid shaft, in nonlinear flexible bearings is investigated. The excitation to the system consists
harmonic forces due to the unbalance and random forces due to arbitrary deviations, of bearing contact
surfaces and subsurfaces, from their ideal design and their progressive deterioration during operation. These

random forces are comparable to the harmonic excitation forces, if the unbalance is not significantly large.

The parameter estimation procedure is based on the averaging technique of Bogoliubov and Mitropolsky
(1961) for deterministic non-linear systems, extended by Stratonovich (1967) for stochastic differential
equations. The govemning equation of motion is transformed from the rapidly varying variables, namely
displacement and velocity, to variables, amplitude and phase, varying slowly with time. Stochastic averaging
is done, to take into account the effect of the random excitation multiplied by a correlated term, so as to
model the slowly varying amplitude as an approximate Markovian process. A second order stochastic
approximation is carried out and a one-dimensional Fokker-Planck equation is derived to descnibe the
Markovian amplitude process. The response to the Fokker-Planck equation is derived and processed for

parameter estimation.

6.1 EQUATION OF MOTION
The analysis is restricted to rotors with the disc mounted on a rigid shaft, the non-linear spring force being
contributed by the bearings (Figure 6.1). The damping to the system is taken to be linear and the disc carries

an unbalance F, . The goveming equation for the system is written as

mx +cx +k , x + ky, G(x) = Fy cos(wt +0) +y(1) 6.1)



G Centre of gravity

Figure 6.1 Rotor-bearing model
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In the equation (6.1), k, and k,, are the linear and non-linear stiffness parameters of the bearings and G(x)

can be a polynomial in x . The rotor mass is m and o is its rotational speed. The angular location of the

unbalance with respect to a reference point on the shaft is expressed by 8. w(¢) is the random excitation

experienced at the bearing ends. The spring force nonlinearity in rolling element bearings is taken to be cubic

in nature (Ragulskis, 1974), i.e.

G(x) = x* (6.2)
6.2 STANDARD FORM TRANSFORMATION

The concept of averaging principle, developed by Bogoliubov and Mitropolsky (1961) for deterministic non-
linear vibration, transforms the equation, involving vibrations which are rapidly varying with time, to a set of
simple equations for slowly varying response coordinates. This principle, extended by Stratonovich (1967)
for stochastic differential equations, has been employed to analyse the rotor-bearing system govemed by

equation (6.1).

Defining
A=ky Ik, (6.3)

and since (1/A) is a small quantity (rolling element bearings being highly nonlinear), equation (6.1) can be

rewritten in terms of the small parameter & =(1/4) as

i+ox =g (x,%,((1))

where

F,%,0(0) = [(Fy A/ mi) cos(at +0) + (1) A= 20,48 = (0} -0 ) Ax -, A'x] 64)
o=k, Im |
E=c/2mw,

SO =w()/m

¢ being a small quantity, the response can be taken to be harmonic in time with frequency @ with slowly

varying amplitude, A(f) and phase, ¢(f), 1.e.
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x(t) = A(t) cos[wt + (1))
x(t) = —wA(t) sin[wt + ¢(t)] (6.5)

Equation (6.4) can, now, be expressed as a set of standard form equations in terms of the slowly varying
parameters A(r) and ¢(1) as

A= [xZ +(‘J-c2 /(02)]1/2

¢ = —arctan[x / wx] - ot (6.6)

or

A= eG4, 0,{(1)]

@ =eH[ A, p,((1)] 6.7)

where
GA,0,{()] =G, (4,0) - {{()A] 0} sin(wt +p)

H[A,¢,{(0)] = H ,,(4,0) = {{()A] 04} cos(wt + ) (6.8)
with

G, (A, 0) = {~(wAd/2) +(02 4 20)+(w, A A* | 40)} sin 2wt +¢)
+{w , AéA} cos 2wt +¢) - (F,A 1 2mw)sin2ot +¢ +6)

+(02 A2 A° 18w)sind(wt +¢) —{(F A/ 2mw)sin(p —6) + @ ,ALA}

H, (A, )= —(©,Af)sin2(wt +p) +{~(wA/2) +(wiA/2w)
+(wiArA? /20)} cos 2wt +@) — (Fy A/ 2mwA) cos(Qwt +¢ +6) 69)
+((u,2,/12/12 /8(1))cos4((ut+(/))+{—((0/1/2)—(E,l/2mwA)cos((p—0)

+(a),2,/l/2a))+(3a),2,/12/1Z /8w)}
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6.3 STOCHASTIC AVERAGING

It can be seen that the right hand side of equations (6.7) contain (employing the terminology of (Stratonovich,
1967)) ‘oscillatory’ terms, i.e. harmonic functions of ot, along with randomly “fluctuating’ terms, i.e.

—{c(NA/ wisin(r +@)and  —{((H)A/ wA} cos(wt +¢), which contain the random force term ().
However, due to the presence of ¢ in the equation (6.4), the parameters A and @ vary slowly with time and
can be assumed to remain constant over a cycle of oscillation. The averaging procesﬁ for Aand ¢ can be

carried out in two stages - by stochastic averaging and elimination of the randomly fluctuating terms
involving random force term {(¢) and then averaging over a cycle of oscillation for removal the oscillating

terms involving harmonic functions of wt .

The approach to obtaining the response of the system, including stochastic averaging, can be simplified by

providing arguments similar to those in the previous chapters and treating the random excitation to the

system as ideal white noise with zero mean and Gaussian distribution.

For a zero mean random excitation £(r) , the expressions (6.7) for A and ¢ can be stochastically averaged

to write the non-"fluctuating’ amplitude term, A,J and the non-"fluctuating’ phase term , @ - as

A,y =G, (A,0)

¢;gf = gHuv (A~ (/))

(6.10)

Further carrying out the averaging process over a cycle one gets, the non-"fluctuating” - non-’oscillatory’

amplitude and phase terms as

2nim
. @ .
Aig/—"o =T j ‘("(‘"m' [ A'r (/)_ldf
27

1]
= ~[(F, / 2maw) sin(p - 0)+(w ,¢A)]
. ) 2r/m
q)'!f -no = 3'7[ ,‘- eH av[Av (/)]dt
! (6.11)

=[~(w/2)-(F, / 2mawA) cos(p - 0) +(@), 20)+(Bwii A* /80))
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Considering equations (6.7), (6.8) and (6.9) and putting the “fluctuatin g’ terms back into the above

i 2 . . N . 3 .
expressions, the non-"oscillating approximations for the amplitude and phase are

Ao = —I(Fy 1 2ma) sin(p - 0) + (@, )]-{¢)/ o} sin(wt + @)

Puo = =@ /2)=(F, | 2maA) cos(p - 0) +(w? / 20) +(Bwil A% /8w)) (6.12)
-{¢@y/ @A} cos(wt + )

The equations (6.12) can be condensed as

A, = 6G,[A,0]-{ (1) @} sin(wt +¢)

P = &, (4, 0]~ {(t) | 0A} cos(wt + )

with (6.13)
G4, p]=~(Fy A/ 2mw)sin(p - 0) +w , AEA]

H\[A,p]=[-(0A/2)=(F,A12mwA) cos(p = 0) +(02 1/ 20) + (B> A? A* | 8w)]

The ‘truncated’ equations (6.11), giving A,!,_,w and ¢,,_,, or the ‘truncated’ equations (6.12), giving
A,, and ¢,,  can be taken as approximations of A and ¢. However, either approximation does not,

adequately, reflect the influence of non- linearity in the system, for while the expression for ¢_,, (or @,,)

does involve the non-linearity parameter A, the one for Anf (or4,,) does not. A higher order of

—-no
approximation for A and ¢ is, therefore, essential to adequately represent the effects of the non-linearity on

the statistical characteristics of the response.
6.4 SECOND ORDER AVERAGING

For a higher order approximation, instead of obtaining A, and ¢,, as in equation (6.12), the procedure of
asymptotic method developed by Bogoliubov (Stratonovich, 1967) can be employed, whereby the non-

"fluctuating’ approximations A,!f and ¢, , of equation (6.10) are taken to have the form
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Ay =A"+a(A",p")
Py =@ +(4",0") (6.14)
where A" and ¢" are expressed as

A" =G (A.0") = 6G (A" ,0")+£2G} (A" 0" )+ ..
. » (6.15)

@ =gH;.(A*,fp‘)=aH:(A*,;o‘)+ng;(A‘,¢‘)+..,
Similarly the variations # and v are expressed in series form as
w(A" @ ) =i (A", ") + e, (4", 0" )+ ...

* " . " * o 6.16
WA e )=vi(4 ,p )+e,(4 ,0" )+ ... ©10)

Equations (6.14), along with the series expansions of equations (6.15) and (6.16) are substituted into the
stochastically averaged equations (6.10).

Noting that
o= (U ANYVA (A" Nw+¢")

. / (6.17)
V(XA YA+ (D Nw+p")

the terms with identical power of & are equated to obtain the equations goveming the successive

approximations. The equation goveming the terms involving the first approximation (of order &') is, thus,

obtained as

G (A", 0" ) +ao(, [ dp")=G, (4",0") 615
HI (A 0 Yy +o(d, 1 dp")=H. (A ,0")

(In the above equation, the term G, (4,¢), of equation (6.10) has been transformed to G.(4",0"))

The right hand side of equations (6.18) involve G,, and H *, which contain both, the ‘oscillatory” and the

. . PR .
‘non-oscillatory” terms. The functions u(4",¢") and w(4’,¢") are now chosen in such a way that

G (A", ¢") and H;(A",p") contain no oscillatory terms. Thus, terms involving (&/&") and
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(¥/dp") are equated to the oscillatory parts of G, and H, ,and G, (A",p") and H;(A",¢") are
equated to the non-oscillatory parts, to obtain

*

G (A", ¢") = |(Fo2 1 2m0)sin(p” -0+, 14"

. v ¥ (6.19)
H' (A ,p )=[-(w,1/2)—(F0,1/2mwA )cos(¢” = 0)+(w2 A/ 2w) + (3w A2 A" /80))]

and

(A (A", 0") 8p™) = {~(0M" 12)+(02A4" 120)+(0> 1> 4" 1 40)} sin 2wt +¢7)
+Hw A"} cos 2wt + ")~ (Fy A/ 2mw) sinQat +¢° +6)
| Hawl A2 A* | 8w) sin4(wt +9)
(3 (A", 0" ) ") = (@, AE)sin 2(0t + 9" ) +{~(wA/ 2) +(@> A/ 20)
Hw2 2 A™ 120)) cos 2wt +¢") = (Fy Al 2mwd Y cosQat +¢°” +0)  (6.20)

+Haw?A? A" 180)cosd(wt +¢°)
Comparison of equations (6.19) and (6.13) reveals

G, (4",9")=G\(4,9)

(6.21)
H{(A",¢")=H\(4,0)
Equations (6.20) give
w (A", 0 ) = (A" 14) = (@24’ 140%) (02474”1807} cos 2wt +9")
Hw, AEA" 1 20)sin 2wt +¢") +(FyA12ma*)cosQot +¢” +6) (6.22)

—((z),zjffi*3 /320%) cosHwt +¢")



v (4°,0") = (0,48 20) os 2@t +¢") +{~(1/4) + (0> 1/ 40?)
2 *2 . *
Hol* 4™ 1 40*)} sin 2ot +¢ )= (FoAd12maw® A ) sinQat +¢" +6)

w2
Ho A4 /320 sind(wt +9)

L . . .
For second approximation (of order ), the goveming equations are, similarly, obtained as

G, +a(Au, | Bp™) = (&G, | A" Yu, +(8G., | 8" v, — (o, | 4G, — (o, | Bp")H,

Hy +o(&, [ 8p"y = (H, | A" Yu, +(H,, | 8p" W, —(&, | A")G, = (&, | 50" YH

from which the non-oscillatory G, (4",¢") and H,(A",¢") are obtained as

Gi(A",0") = (FyAl4mo*){~(50A | 4)+(50 A/ 40)+(A” 024 | w)}sin(p” —6)

+(5w ,ALF, | 8mw?) cos(p” - 6)

Hi(A 0 )= {347 022 180)-(BA 0l 4 180°) - (514" wi1' 12560 )~ (wA /8)

—(@* A% 180%)} = {(FyA* J4mad") = (Fywi A 14ma’ A™)

~(174"F,wld’ 132mw*)) cos(p” = 0)—(Fyw, A2l 2mw* A ")sin(p” - 0)

Substitution from equations (6.19) and (6.25) into equation (6.15) gives

A" =—£[(F, A/ 2mw)sin(p” ~ 0) + @, A" 1+ & [(FA 1 4mw® ){~(5wA 1 4)
+(5wi A/ 4w) +(A"2a),2,/12 /| w)}sin(p” - 6) + (5w, A* EF, /8mw?)cos(p” — )]
0" = e[~(wA!2)—(F,AI2mwd")cos(¢” ~ 0)+(0 A/ 20)+ (B2 2 A 18w))
+e UBA 022 180) - (34 Wl A 180°)= (514" 0 A* 125607 ) — (wA” 18)
—(wiA* 18w?)} - ((Fy A2 [ 4mad”) —(Fyoll? [4ma*A")

~(17TA" Fy 2} 132mw*)} cos(@” —9) - (Fyw, A2 £12ma* A")sin(p” - 0)]

96

(6.23)

(6.24)

(6.25)

(6.26)

(6.27)
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Noting equation (6.14) and that the ‘oscillatory’ terms are confined to the variables u and v, the non-

*fluctuating * - non-’oscillatory’” amplitude term Ay becomes

Ayno =4 (6.28)

where A" is given by equation (6.26).

Consideration of equations (6.28), (6.7) and (6.8) enables writing the non-"oscillatory’ amplitude term, A,

as

Ano = Anfﬂm - 8[(‘:"([)2/(0) Sin(a)t+qo*)]

= —£[(FyA/2mw)sin(@” = 0)+w , A" 1+ €*[(Fy A/ 4ma* ) {~(5wl 1 4)

(6.29)
w2 . *
+(5w3A14w)+(A wi A | @)} sin(p” - 0)+ (5w, A &F, 1 8mw* ) cos(p” — 0)]
—e[(C(HA ] w)sin(wt +¢"))
Similarly
0. = e[~(wA/2) = (F, A1 2mwA")cos(p” = 6) + (0> A/ 20) + B> 1> A" 18w)]
L2 {GA" 022 18w) = BA" 0l 22 180°) = (514" 0t At 12560° ) — (wA? 18)
(0?22 18w )y~ {(Fy A% 14mawA" )~ (Fywl A? | 4ma’ A”) (6.30)

~(174" Fyw? A 132ma’)} cos(p” - 0) - (Fyw,A* €/ 2ma* A" ) sin(p” - 6)]

~6[{{(NA] A" cos(@t+7)]

The expressions in equations (6.29) and (6.30) are taken as approximations of the amplitude and phase

terms, A and ¢ | i.e.

A"~ A
(6.31)

. K .
® Py
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6.5 F-P-K EQUATION

The amplitude term, A" and phase term, ¢ approximations in equation (6.31) are correlated with random
excitation force (7). However , since £{?) is assumed to be broad band random process, its correlation time
is much smaller than the time constant characterising the rate of change of amplitude 4™ and phase ¢, which
are slowly varying functions of time. It can be assumed that the values of £(2) are statistically independent of
the values of A" i.e. amplitude 4" can be approximated as a Markov process (Stratonovich, 1967;
Khasminiskii, 1966; Papanicolaou and Kohler, 1974 and Lin, 1986). In addition amplitude changes much
more rapidly than the phase, and hence the amplitude manages to establish an equilibrium amplitude

distribution p(A “lp") for every value of phase ¢'.

The modified FPK equation for the simplified equation ( of the form as equations (6.29-6.31) ) of the

approximate Markov process is given as

P9 ==dl " {(a,)p) — 01" (b))} +&* 11" {(c,) P}

: (6.32)
+£2 1 N 3p" (d, ) py+ €73 1 8p" {(ey) P}
where modified drift coefficients are expressed as
* * ! o * * * : -
a, =[£G, +£G, +.. ]+ [K[@A™ | A @ Mdr+e’ jK[[%*/ago*,qb:]dr
A 7 (6.33)
0 0
b, =[eH, + e H 4. ] +E jK[ag‘o*/z%*,A:]ngz jK[a(p*/a(p*,gb:]dr
and modified diffusion coefficients are
0 . .
¢, =& J'K[A*. Az
p RS w* *oYw
dy, =& [{K[A", ¢ 1+ K[p . A Tjdr (6.34)

0
€ = & IK[())*,(}’:]dT
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In equations (6.33) and (6.34) 7 (=(,- 1)) is the time shift and K[A" (%] is the correlation function.
While computing the correlation function, the randomly fluctuating parts of the expressions 4~ and ¢"

(equations (6.29-631) ), ie. the terms—{((1)A/ w}sin(ar +p)and —{¢(1)A/ e} cos(@t+p), which

contain the random force term ¢(¢) , need to be accounted for

For the one dimensional approximate Markov process , A* of equations (6.29) and (6.31), the drift
coefficients are obtained as

a, ={—&(FyA/2mw) sin(p” ~0) - e(w , AEA" )+ &2 (FoAl4mw* ) {~(5wA ] 4)

w2 . *
H5w A/ 4w) +(A™ @) A7 | @)} sin(p” - 6) +&* (5w, A*EF, | 8ma? ) cos(p” ~ 6) (6.35)
+&2 {(S(&, ) A% 18w A"}

b, =0

The diffusion coefficients are computed to be
¢, = e {S(Lw)A* 18w? )

d,=0 (6.36)

e, =0

where the spectral density of noise £(¢) at the frequency @ , defined as

S(G(0),w) =2 [ < £(#,)¢(t;) > cos oty —£)d(t, = 1,) (6.37)
The Fokker Planck equation for amplitude A", from above equations , can now be written as

~(01 AU {~e(Fy A1 2ma)sin(p” —0) - &(w,AEA") +¢* (FyA/ 4mw* ) {~(5wA 1 4)
50 A1 dw)+ (A w22 L)y sin(p” - 0) +&” (5w, A" &F, /8ma*)cos(p” ~ 6) (6.38)

+e2 (S(C ) A2 [ 8cw? A} pl+ 62 (S(C ) A /807 (& p/ )= a
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6.6 RESPONSE
For a stationary case equation (6.38) reduces to

~(31 A -E(Fy A1 2m) sin(p” = 0) - 6w, AEA") + £ (Fy A I dmar® Y{~(5wA | 4)
%2 . *
HSwi Al 40) +(A” 0 A" | w)} sin(p” - 8) +&* (5w, A2 &F, 18ma* ) cos(p” - 6) (6.39)

+62 (S(C, )4 18w A"} pl+ e (S(L ) A2 1802 (62 p/ Ad™*) = 0
The solution to the stationary Fokker-Planck equation, (6.39), tums out as

p(A") =cA” exp[—{8w® / £* 2 S(¢, )} {e(A" FyA I 2mw)sin(¢” - 6)
w2 * *
+e(A" @, AE12) =" (FyA ] 4ma* ) {~(54" wA 14) + (54" 02 A/ 4w) (6.40)

HA" 22 130 sin(p” - 0)~ (54" 0, A EF, I8mw* ) cos(p” - 0)}]
6.7 PARAMETER ESTIMATION

The probability density function for any two values A4, and A4, of the amplitude (with 4;,, ) 4,), can be

written from equation (6.40), as

p(A,') = cA,' exp[—{&u2 /fizizS(g’, w)} {5(A,‘ Fy A1 2mw) sin((/f -0)
+6( A 0, AE12) = £ (Fy A1 4ma* =54, oA 1 4) + (54, 02 A1 40) (6.41)
A 02 22 [30))sin(p” - 6) - 6> (54; w42 ¢F, | 8ma* ) cos(e” ~ O)}]
P(AL) = cAy,, exp[—{8w? | €2 22 5(¢, )} {&(4; Fy Al Imw)sin(p” = 6)
+e(A 2w, AE)2) = g2 (Fyd ! 4ma® ){~(5A @A/ 4) +(54,, 022 4w) (6.42)

HAD w22 13w)}sin(p” - 0) - & (5410, 4" 5F, / 8maw’)cos(p” -~ 60)}]
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Defining, A4; = (A,,, — A,"), for small AA,* »-One can write, from equations (6.41) and (6.42)
[p(Ar) ! A= (A, 1 A] ) exp[-{8a? 1*228(¢, )} {e(A4] FyA 1 2mw)sin(p” - 0)
+&(A; M o AE) - £ (Fy A/ 4mo*){~(5A" wA | 4)
. L (6.43)
HOM,; 0, A1 4w) +(A] M 0L 2* | w)} sin(p” - 0)

—&* (54, 0, A &F, /8mw? ) cos(p” ~ 0)}]

For N amplitude values, A:,A;,...,A;,, equation (6.43) is expressed as set of (N —1) linear

simultaneous algebraic equations,

|:(l/8AA:(u2 )lﬂ{A;-HP(A;)/ Al*p(Af:1)}]{S(g’w)/wn‘§Fo COSG}
H13/16mw]{sin(p" - 0) w,&cos @) —[5/ 16mw3]{a)n sin(p” - 6)/ Ecos 8}

* * * (6.44)
A [ 4mew* Y , Asin(p” = 0) ] Ecos 0} +[A, ]{1/1:0 cos 0} +[Ssin¢” / 8ma* J{tan 6}

=-[5cos¢p” /8mw?] i=12,...(N-1

Equations (6.44) are to estimate the parameters w,, A, F,, &, S({,w) and 6., using the Least

Squares procedure.

The amplitude displacement and velocity data (x and X) is obtained experimentally and using equation

(6.6), the amplitude A, and phase ¢ are computed along with the probability function, p(A4), to be fed into
equation (6.44) for parameter estimation. However, equation (6.44) involves A", " and p(4”) and as an

initial approximation the experimentally obtained A, ¢ and p(4) are taken as A", ¢ and p(4”)

respectively.
6.8 EXPERIMENTATION
The procedure described above is illustrated on the laboratory rotor. A disc of mass m= 0.41 Kgs. is

centrally mounted on the shaft. The shaft, as in the previous illustrations, is mounted in the same bearings at

its ends. Accelerometers are mounted on one of the bearing caps to sense the vibration signals. A reference
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signal is picked up from the shaft by a non-contact eddy current proximity probe. The rotor is dynamically

balanced and then a known unbalance mass is attached at the disc. The rotor configuration is same as in

Chapter 3. The shaft is rotated at a particular speed and the signals are picked up. The experiment is

repeated for different set of known unbalance masses and for different speeds.

Experimentally obtained displacement and velocity signals along with the corresponding reference signal are
shown, for a rotor speed of 1800 rpm, in Figure 6.2.

6.8.1 Initial Approximation

The amplitude 4 and phase ¢ signals computed from these measured data are shown in Figures 6.3 and 6.4.
The probability density function, p(4), of the amplitude is shown in Figure 6.5. The bearing parameters
estimated, for initial approximation of using experimentally obtained A(r) as 4*(f) and ¢(¢) as 9" (¢) in

equations (6.44) are given in Table 6.1.

Table 6.1 Experimentally estimated parameters (after initial approximation)
Speed | Unbalance Parameters estimate
0 m e ¢ 0 me £ k(x)
rpm gm-cm degrees degrees gm-cm N/mm
(at 0 =0"
1800 10.5 0.7 0.1 16.80 0.062 | 1.21x10*-0.58x 10" x*
- 17.5 1.4 0.2 2273 0.071 | 1.23x10*-0.83x10°x"
- 24.5 6.9 0.1 30.64 0022 | 1.39x10%-1.06 x 10° x*
1400 10.5 3.0 0.3 17.24 | 0083 | 0.86x 10*-0.84x10" x*
- 17.5 33 0.5 23.45 0.082 | 0.79x10*-0.70 x 10"° x*
24.5 4.6 0.2 16.56 0.042 | 1.12x10°-0.63x 10" %
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—_
e 4.00 T T T T T T r . r
.
> 320
g8
E 2wl
. ‘
160
Q
2 | M
= , -
= 0.80 | i
e ! ‘
E 0.00 ) ! L L | h ! )
0.00 010 020 030 0.40 0.50 060 070 080 090 100
e 1
Time ¢ (sec X 10)
Figure 6.3 Amplitude variation of the measured response
_‘/\ 10.00 T T T i ‘ T T T T
o
yo{
6.00 |-
>< -
g
© 200 |- i
OD v, L P s oo Daac, PO, L0, Aa. Jana, ML, oan, Lo athen = P,
.dc) YO A A T CS ) ARV g v o e \owroxf v e Mg
~ -~} N
SN
o "800} -
vy
5]
f‘ "'10.% 1 L 1 1 l | 1 1 :
0.00 0.10 0.20 030 0.40 050 0.60 Q.70 080 0.90 100

Figure 6.4

Time ¢ (sec X 10"

Phase variation of the measured response



10.00

9.00 -

Probab. funct. p(4)

0.00

A 1 1 l

0.00

Figure 6.5

0.40

0.80 120 160 2.00

Amplitude 4 (mm X 10%)

Probability distribution of the response amplitude




106

6.8.2 Iterative Scheme

For a more accurate estimation of estimated parameters an iterative scheme is devised. The parameters
estimated from the above initial approximation are substituted in equations (6.22, 6.23), al ong with the initial

assumption of taking the experimental 4 and ¢ to be 4" and ¢ respectively, to compute the

variations # and v. These values of u and v and the experimental 4 and ¢ are employed in equation

(6.14) to get a new approximations for 4" and ¢". The new approximations, A" and @", are now

employed in equation (6.44) for a fresh parameter estimation and thus, the iterative cycle can be continued.

The final set of parameters estimated, after such iteration is given in Table 6.2.

Table 6.2 Experimentally estimated parameters (after iteration)
Speed Unbalance Parameters estimated
w m ¢ 0 0 me 13 k(x)
rpm gm-cm degrees | degrees | gm-cm N/mm
(at 0=10"
1800 10.5 2.9 03 1423 | 0023 | 131x10°-092x10"x
- 17.5 1.6 0.1 2032 | 0036 | 1.41x10°-1.10x10°x°
- 245 32 0.2 2732 | 0032 | 1.60x10*°-1.28x 10"
1400 10.5 1.7 0.2 1543 | 0063 | 0.94x10"-0.94x 10"’
- 17.5 32 0.4 2140 | 0063 | 0.93x10*-1.01x10°%’
- 24.5 1.8 0.1 2356 | 0037 | 137x10°-0.72x 10" %

(Refer to Appendix C for Statistical Error Table)

6.9  VALIDATION

WL u i 1 I tion and the
he closeness, between the known unbalance introduced in the rotor and its angular loca
i i idi ocedure developed. The
corresponding experimentally estimated values, 1s a measure of the validity of the pr P .
Im i eason The bearing stiffness parameters obtained in the
estimated damping ratios also appear phy51cally reasonable. The b g S ess p

: i is (1984), are
previous Chapter 3, employing the analytical formulations of Ragulskis et al. (1974) and Harris (1984)

reproduced in Table 6.3, for easy reference.
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Table 6.3 Theoretical (Ragulskis et al., 1974 and Harris, 1984)

bearing stiffness parameters

Preload Theoretical Stiffness

(mm) (Radial)

(N/mm)

0.0002 1.20 x 10*- 4.01 x 10" x?
0.0003 1.47x 10*-2.18 x 10 x2
0.0004 1.69 x 10*- 1.42 x 10" »?
0.0005 1.89 x 10*-1.02 x 10" x?
0.0006 2.08x 10- 6.09 x 10° x?

The estimated bearing stiffnesses of Table 6.3 can be seen to show good resemblance to theoretically

possible values of Table 6.3.

6.10 REMARKS

The analysis presented underlines that stochastic averaging techniques can be usefully employed to address
the inverse problem of parameter estimation in a rotor system govemed by a nonlinear equation having both,
harmonic and random forms of excitation. Also, along with the bearing stiffness parameters, estimates of the
unknown unbalance of the rotor, its angular location and the damping ratio are also obtained, as by-products

of the procedure developed.



CHAPTER 7

CONCLUSION

The present study has concemed itself with the inverse problem of parameter estimation in nonlinear rotor
bearing systems from the vibration signals measurable at the bearing caps. Methods in statistical dynamics
have provided the framework of analysis. Nonlinear rotor bearing system have been modeled as Markovian
processes or as approximate Markovian processes after stochastic averaging to render standard form

equations, which were solved to obtain the response statistics.

The following rotor systems were considered

@) Balanced Rigid Rotor

(1) Balanced Rigid Rotor With Flexible Disc
(i)  Balanced Multi-Disc Flexible Rotors

@iv) Unbalanced Rigid Rotor.

The parameter estimation procedures, were illustrated on a laboratory rotor model and the results were
validated through comparison with those from available analytical guidelines. A Monte-Carlo simulation was

also done to check the accuracies of the assumptions and the approximations involved.

In the first three cases, balanced rotors (or rotors with negligible unbalance) were considered and estimates of
the nonlinear stiffness parameters of the bearings were obtained along with the estimates of linear
parameters. The appropriateness of statistical methods and good estimates of the parameters, provided the
motivation for taking up the case of a rotor with an unknown small, but not negligible unbalance (If the
unbalance is noticeably high, then the priority is to balance the rotor). The statistical averaging technique and
subsequent iterative refinements, adopted for this case, yield not only good estimates for the linear and
nonlinear stiffness parameters of the bearings, but simultaneously also provide good approximations of the
magnitude of the unknown unbalance as well as its location with respect to a reference point on the shaft.

Reasonable values are obtained for the damping ratio too, as by-products. However these damping ratios

need to be validated through an independent set.



109

These aspects highlight the suitability of the procedure, for usage as an on-line tool for parameter estimation,
in contrast to other available techniques which either need the machine to be stopped to give it a known
excitation or others which provide analytically possible ranges of stiffness of the bearing treated in isolation
of the shaft. The possibility of monitoring the nonlinear part of the bearing stiffness for incipient bearing
faults and its wear and tear needs to be explored further.

The unbalanced rotor analysis has been restricted to the case of a rigid rotor in flexible bearings, which could
be treated as a single-degree-of-freedom system. The analysis needs to be extended to multi-degree-of
freedom systems, by considering rotors on flexible shafts carrying more than one disc. If such an extension of
the present scheme can be made, then along with the stiffness estimates, the possibility of obtaining

approximations for the unbalances on the various discs (as obtained in the present study for a rigid rotor)

need to be investigated,

Further, the problems have been formulated by taking the equivalent form linear viscous damping. The role
of other forms damping in the analysis needs exploration. The present analysis, based on processing random
vibrations, is restricted to rotors supported in rolling element bearings. The suitability of the analysis, for

rotors in fluid film bearings needs to be investigated.

Instability phenomenon in rotors experiencing random excitations, and the influences of bearing stiffhess
nonlinearity have not been investigated in the present study. However, the present study, and its possible
future extensions, can facilitate such investigations, by providing estimates of the parameters which form the

causes of rotor instabilities.
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APPENDIX A

INSTRUMENTATION
A.1  SPECIFICATIONS OF INSTRUMENT:

1. Accelerometer (Piezo-electric):
Make - Bruel & Kjaer, Denmark Type - 4370

Charge Sensitivity - 10.0 pC/ms™ Frequency Range - 0.1 Hz. ~ 5.0 kHz.

Construction - Delta Shear Maximum Acceleration - 0.6 km/sec’

2. Proximity Probe:

Make - National Aeronautical Laboratory, India Type - Eddy current
Maximum Amplitude Allowable - 2 mm peak to peak.

Frequency Range - 50 Hzto 1 kHz

3. Digital Tachometer:
Make - Teclock Corporation, Japan Range - 0 to 10 000 rpm

4. Phase Meter:

Make - Bruel & Kjaer, Denmark Type - 2977
Inputs - Two BNC Sockets - A - Reference input

B - Unknown Phase input

Phase Accuracy - +0.1° absolute error.

5. Tunable Band Pass Kilter:
Make - Bruel & Kjaer, Denmark Type - 1621
Input - BNC Socket Frequency Range - 0.2 Hz. ~ 20 kHz.
Selective Bandwidth - 3% or 23% (1/3 Octave)



6. Charge Amplifier:
Make - Bruel & Kjaer, Denmark
Calibrated Output ratings -

Frequency Range -

7. Photoelectric tachometer Probe:
Make - Bruel & Kjaer, Denmark
Transducer Type -

Minimum Sensitive -

Response Time -

Connector -

8. Digital Storage Oscilloscope (DSO):
Make -Larsen & Toubro and Gould Electronics
Input - 2 Channel BNC Socket
Screen Update Rate - 30 Traces per sec.

Interface Bus - IEEE-488

9. GPIB-P(C:
Type - IEEE-488
Maximum Frequency Range - 100 MHz.

Transfer Rate -
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Type - 2635

Selectable in 10 dB steps,

0.1 mVto 1 V/ms? (Acceleration),

10 mV to 100 V/ms™ (Velocity),

0.1 mV to 10 V/mm (Displacement)
Switchable

0.2 or 2 Hz. to 100 kHz.(Acceleration),
1 or 10 Hz to 10 kHz (Velocity)

1 or 10 Hz to | kHz (Displacement)

Type - MM 0012

Combined infra-red light source and photo-sensor,
fitted with infra-red filter.

100 mV at 10 mm distance from a flat white card.
200 ps minimum for full output. Equivalent to a
10 mm long reflecting surface passing at 50 m/sec
BNC with double shield (BNT)

Type - 4072
Frequency Range - 0 ~ 100 MHz (DC)
Maxi. Sampling Rate - 400 M samples/sec

Connector - Shielded 24 pin conductor cable
Connected to - PC/AT
5K bytes/sec in binary mode



APPENDIX B

EIGEN VALUES AND EIGEN VECTORS
OF FLEXIBLE ROTOR-BEARING SYSTEMS WITH SIGLE DISC

B.1 EIGEN VALUES:

pr =0

2 12E1 myny + 2y, +n,m, F \/ —4mymymy (my +my, +m,) + (mymy +2mym, + mym,)?
23 =

3
my L 2mym,m,

B.2 EIGEN VECTORS:

1 u

"3 u

21
U=|1 u, uy,
11 1

with
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R i A o T, 2 2.2 22
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1 i Bl M 2 2.2 22
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APPENDIX C

STATISTICAL ESTIMATION ERRORS

The statistical errors have been obtained by processing ensembles of data through the parameter estimation
algorithms. The estimated values of the parameters for a typical ensembles of five signals each have been

presented here in tabular form. Table C.1 concerns the rigid rotor configuration of Chapter 3; Table C.2, C.3
and C.4 refer to the rotor configurations of Chapters 4, 5 and 6 respectively.

A typical ensembles of displacement and velocity signals have been shown in Figs C.1 and C.2. The
estimated parameters presented in Table C.1 refer to these figures.

Table C.1 Statistical Errors in Single Disc Rigid Rotor Case (Chapter 3)
Parameters
w? (rads/secy’ Variation A (mm?) Variation

Vertical 5.42x 10’ -1.27 x 10°
5.32x 10 -1.23 x 10°

5.37 x 10 1.85% -1.24 x 10° 3.15%
5.36 x 10 -1.25x 10°
5.37x 10 -1.25 x 10°
Horizontal 3.21 x 10’ -1.29x 10°
3.14 x 10’ -1.24x 10°

3.11 x 10 3.11% -1.25x 10° 3.88%
3.18 x 10 -1.24 x 10°
3.16 x 10’ -1.27 x 10°
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Figure C.1 Typical Ensemble of Displacement Signals for the Rigid Rotor Case (Chapter 3)
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Table C.2 Statistical Errors in Flexible Single Disc Rotor Case (Chapter 4)
Parameters Vertical Variation Horizontal Variation
2 2 2.13x 10 2.12x 10

@, (rads/sec) 2.21x 107 2.15% 10’
2.14x 10 3.62% 2.17x 10° 2.30%
2.17x 10’ 2.16x 10°
2.19% 10° 2.15x 10°
7, (mm)” -1.25x 102 -1.41x 10°
-1.24x 10 -1.44x 10°
-1.21x 10° 3.20% -1.42x 10 2.08%
-1.25x 10° -1.43x 10°
-1.23 x 10° -1.42x 10°
7 2 1.98 x 10’ 2.22x 10’
@,, (rads/sec) 1.92 x 10° 2.24% 10
1.96 x 10° 3.03% 2.25x 10° 1.78%
1.94x 10° 221x 107
1.97 x 10° 2.24x 10°
R “1.15x 10° -1.36x 10°
Ay (mm) -1.16 x 10° -1.32x 10°
-1.13x 10° 3.42% -135x 10° 2.94%
-1.17x 10° -1.34x 10°
-1.15x 10° -1.32x 10°
— 2.10 2.34
[U“u: 206 230
2.12 2.83% 2.35 2.13%
2.09 2.34
Z.1 2.33




Table C.3 Statistical Errors in Flexible Multi Disc Rotor Case (Chapter 5)
Parameters Vertical Variation Horizontal Variation
M -4
k; (N/mm) 1.04x 10 0.87x 10
. 1.01 x 10° 0.86 x 10°
1.05 x 10° 3.81% 0.84x 10° 3.45%
1.03 x 10* 0.85 x 10°
1.05 x 10 0.86 x 10°
10 10
kv, N/mm?) -5.10x 10 -3.50x 10
N -5.08 x 10 357 % 100
-5.06 x 10*° 0.78% -3.55x 10%° 1.96%
-5.09 x 10'° -3.57 x 10%°
-5.06 x 10%° -3.52x 10
K 3
k /mm) 1.04 x 10 0.86 x 10
n ® 1.03 x 10* 0.87 x 10*
1.06 x 10* 2.83% 0.84x 10* 3.45%
1.04 x 10° 0.85x 10°
1.05 x 10* 0.87 x 10*
10 10
N/mm?) -3.62x 10 -2.19x 10
o, € -3.58 x 10%° -2.21x 10%°
-3.61 x 10 1.10% -2.22x 10" 1.35%
3.62 x 10" -2.19x 10%°
3.59 x 10" -2.20x 10%
[~ 0.21 0.20
mmy (Kg) 0.20 0.21
0.21 4.76% 0.20 1.76%
0.21 0.21
0.20 0.20




Table C.4  Statistical Errors in Unbalanced Rotor Case (Chapter 6)
Speed Unbalance Parameters estimated
o m e ) 2] me E k()
rpm gm-cm degrees degrees gm-cm Nimm
(at =0%

1800 2.9 0.3 14.23 0.023 131x10°-092x100 %
2.8 0.3 14.42 0.022 1.32x10*-0.91 x 10"
10.5 2.9 0.3 14.32 0.022 1.34x10*-0.93 x 10"
Variation 2.8 0.3 14.30 0.023 1.33x10%-091x10'°¢
2.9 0.3 14.36 0.022 1.32x10*-092x 10'°¥*

(3.45%) (0.00%) (1.32%) (4.35%) (2.24%)  (2.15%)
- 1.6 0.1 20.32 0.036 141x10°-1.10x 107 ¢
17.5 1.6 0.1 20.12 0.036 1.44x10%-1.09x 10'°*
1.6 0.1 20.41 0.035 1.45x10*-1.07x10'°%*
Variation 1.6 0.1 20.24 0.036 1.43x10%-1.08x10'°x*
1.6 0.1 20.31 0.035 1.45x10"-1.09 x 10" *

(0.00%) (0.00%) (1.42%) (2.78%) (2.76%)  (2.73%)
- 3.2 0.2 27.32 0.032 1.60x 10" -1.28x 1070 x"
33 0.2 27.41 0.031 1.62x10°-127x10"°%*
24.5 3.2 0.2 27.36 0.031 1.63x10°-1.25x10"°%*
Variation 32 0.2 27.38 0.032 1.61x10°-1.26 x 10'°*
3.2 0.2 27.40 0.031 1.63x10°-1.27x10'°%°

(3.03%) (0.00%) (0.33%) (3.13%) (1.84%)  (2.34%)
1400 1.7 0.2 15.43 0.063 0.94x10°-094x107%
1.7 0.2 15.23 0.061 0.91x10*-0.92x10°%°
10.5 1.7 0.2 15.34 0.064 0.93x10*-0.93x10'°%°
Variation 1.7 0.2 15.30 0.062 0.94x10%-0.93x10"° %"
1.7 0.2 15.21 0.063 0.93x10'-0.92x 10"

(0.00%) (0.00%) (1.30%) (4.69%) (3.19%)  (2.13%)
- 3.2 0.4 21.40 0.063 0.93x10°-1.01 x 10" x"
31 0.4 21.32 0.062 0.92x10*-1.02x10'°*
17.5 3.2 0.4 21.37 0.063 0.94x10°-1.04x 10"
Variation 3.1 0.4 21.41 0.063 0.93x10*-1.03x10'°x*
32 0.4 21.35 0.062 0.94x10*-1.01 x 10°°

(3.13%) (0.00%) (0.42%%) (1.59%) (2.13%)  (2.88%)
" 18 o1 23.56 0.037 137x107-0.72x 107 x
1.8 0l 23.42 0.036 1.36x10°-0.71 x 10'°x*
245 18 01 23.61 0.037 135x10'-0.73x 10'°¥
Variation 1.8 0.1 23.59 0.036 1.36x10*-0.72x 10'°%°
18 01 23.53 0.037 137x10*-0.71x 10°%°

©000%) | (000%) | (080%) | (@70%) | (146%) (2.74%)
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